File size: 1,680 Bytes
8a6d537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Category Search from External Databases (CaSED)

Disclaimer: The model card is taken and modified from the official repository, which can be found [here](https://github.com/altndrr/vic). The paper can be found [here](https://arxiv.org/abs/2306.00917).

## Intended uses & limitations

You can use the model for vocabulary-free image classification, i.e. classification with CLIP-like models without a pre-defined list of class names.

## How to use

Here is how to use this model:

```python
import requests
from PIL import Image
from transformers import AutoModel, CLIPProcessor

# download an image from the internet
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

# load the model and the processor
model = AutoModel.from_pretrained("altndrr/cased", trust_remote_code=True)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")

# get the model outputs
images = processor(images=[image], return_tensors="pt", padding=True)
outputs = model(images, alpha=0.5)
labels, scores = outputs["vocabularies"][0], outputs["scores"][0]

# print the top 5 most likely labels for the image
values, indices = scores.topk(5)
print("\nTop predictions:\n")
for value, index in zip(values, indices):
    print(f"{labels[index]:>16s}: {100 * value.item():.2f}%")
```

## Citation

```latex
@misc{conti2023vocabularyfree,
      title={Vocabulary-free Image Classification}, 
      author={Alessandro Conti and Enrico Fini and Massimiliano Mancini and Paolo Rota and Yiming Wang and Elisa Ricci},
      year={2023},
      eprint={2306.00917},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```