Create README.md (#3)
Browse files- Create README.md (ffeb9c458072e352cca2ebcf330a9a10c5c1c852)
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Category Search from External Databases (CaSED)
|
2 |
+
|
3 |
+
Disclaimer: The model card is taken and modified from the official repository, which can be found [here](https://github.com/altndrr/vic). The paper can be found [here](https://arxiv.org/abs/2306.00917).
|
4 |
+
|
5 |
+
## Intended uses & limitations
|
6 |
+
|
7 |
+
You can use the model for vocabulary-free image classification, i.e. classification with CLIP-like models without a pre-defined list of class names.
|
8 |
+
|
9 |
+
## How to use
|
10 |
+
|
11 |
+
Here is how to use this model:
|
12 |
+
|
13 |
+
```python
|
14 |
+
import requests
|
15 |
+
from PIL import Image
|
16 |
+
from transformers import AutoModel, CLIPProcessor
|
17 |
+
|
18 |
+
# download an image from the internet
|
19 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
20 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
21 |
+
|
22 |
+
# load the model and the processor
|
23 |
+
model = AutoModel.from_pretrained("altndrr/cased", trust_remote_code=True)
|
24 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
25 |
+
|
26 |
+
# get the model outputs
|
27 |
+
images = processor(images=[image], return_tensors="pt", padding=True)
|
28 |
+
outputs = model(images, alpha=0.5)
|
29 |
+
labels, scores = outputs["vocabularies"][0], outputs["scores"][0]
|
30 |
+
|
31 |
+
# print the top 5 most likely labels for the image
|
32 |
+
values, indices = scores.topk(5)
|
33 |
+
print("\nTop predictions:\n")
|
34 |
+
for value, index in zip(values, indices):
|
35 |
+
print(f"{labels[index]:>16s}: {100 * value.item():.2f}%")
|
36 |
+
```
|
37 |
+
|
38 |
+
## Citation
|
39 |
+
|
40 |
+
```latex
|
41 |
+
@misc{conti2023vocabularyfree,
|
42 |
+
title={Vocabulary-free Image Classification},
|
43 |
+
author={Alessandro Conti and Enrico Fini and Massimiliano Mancini and Paolo Rota and Yiming Wang and Elisa Ricci},
|
44 |
+
year={2023},
|
45 |
+
eprint={2306.00917},
|
46 |
+
archivePrefix={arXiv},
|
47 |
+
primaryClass={cs.CV}
|
48 |
+
}
|
49 |
+
```
|