SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-16.10.24-ifhavemorethan10sampleperfamily")
# Run inference
sentences = [
'Power Cable,600V/1000V,ROV-K,4mm^2,Black Jacket(The Color Of Core Is Blue And Brown),36A,Shielded Style Outdoor Cable',
'Electrical equipment and components and supplies',
'Power sources',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
pearson_manhattan | nan |
spearman_manhattan | nan |
pearson_euclidean | nan |
spearman_euclidean | nan |
pearson_dot | nan |
spearman_dot | nan |
pearson_max | nan |
spearman_max | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,110 training samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 3 tokens
- mean: 17.04 tokens
- max: 83 tokens
- min: 3 tokens
- mean: 7.97 tokens
- max: 12 tokens
- Samples:
sentence1 sentence2 USRC20(RH2288,2E5-2680v2,1616G,12600GB(2.5 )+2600GB(2.5 ),410GE,4GE,DC)-OS RAID1,DATA RAID5+Hotspare,No DVDRW
Computer Equipment and Accessories
100m 160x10 Kafes Kule
Heavy construction machinery and equipment
Air4820 Superonline Video Bridge
Data Voice or Multimedia Network Equipment or Platforms and Accessories
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 5,381 evaluation samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 3 tokens
- mean: 16.75 tokens
- max: 71 tokens
- min: 3 tokens
- mean: 7.89 tokens
- max: 12 tokens
- Samples:
sentence1 sentence2 SNTC-24X7X4 Cisco ISR 4331 (2GE,2NIM,4G FLASH,4G DRA
Data Voice or Multimedia Network Equipment or Platforms and Accessories
Iridium GO Ecex
Communications Devices and Accessories
LC/LC SM 9/125 DX 1.8mm Lszh L 10m
Components for information technology or broadcasting or telecommunications
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_max |
---|---|---|---|---|
0.0637 | 100 | 2.2804 | 1.9512 | nan |
0.1274 | 200 | 1.8803 | 1.9189 | nan |
0.1911 | 300 | 1.8687 | 1.7873 | nan |
0.2548 | 400 | 1.7455 | 1.7351 | nan |
0.3185 | 500 | 1.714 | 1.6717 | nan |
0.3822 | 600 | 1.6956 | 1.6789 | nan |
0.4459 | 700 | 1.7134 | 1.6407 | nan |
0.5096 | 800 | 1.7059 | 1.6175 | nan |
0.5732 | 900 | 1.674 | 1.6256 | nan |
0.6369 | 1000 | 1.6725 | 1.5826 | nan |
0.7006 | 1100 | 1.6238 | 1.5815 | nan |
0.7643 | 1200 | 1.5819 | 1.5684 | nan |
0.8280 | 1300 | 1.526 | 1.5511 | nan |
0.8917 | 1400 | 1.4976 | 1.5496 | nan |
0.9554 | 1500 | 1.5709 | 1.5358 | nan |
1.0191 | 1600 | 1.4731 | 1.5498 | nan |
1.0828 | 1700 | 1.3914 | 1.5280 | nan |
1.1465 | 1800 | 1.4137 | 1.4980 | nan |
1.2102 | 1900 | 1.3964 | 1.5012 | nan |
1.2739 | 2000 | 1.4244 | 1.4972 | nan |
1.3376 | 2100 | 1.4567 | 1.4943 | nan |
1.4013 | 2200 | 1.4224 | 1.4880 | nan |
1.4650 | 2300 | 1.4452 | 1.4685 | nan |
1.5287 | 2400 | 1.3843 | 1.4976 | nan |
1.5924 | 2500 | 1.4538 | 1.4715 | nan |
1.6561 | 2600 | 1.3864 | 1.4738 | nan |
1.7197 | 2700 | 1.3514 | 1.4724 | nan |
1.7834 | 2800 | 1.4295 | 1.4538 | nan |
1.8471 | 2900 | 1.3631 | 1.4629 | nan |
1.9108 | 3000 | 1.3654 | 1.4588 | nan |
1.9745 | 3100 | 1.3335 | 1.4552 | nan |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for alpcansoydas/product-model-16.10.24-ifhavemorethan10sampleperfamily
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on Unknownself-reportedNaN
- Spearman Cosine on Unknownself-reportedNaN
- Pearson Manhattan on Unknownself-reportedNaN
- Spearman Manhattan on Unknownself-reportedNaN
- Pearson Euclidean on Unknownself-reportedNaN
- Spearman Euclidean on Unknownself-reportedNaN
- Pearson Dot on Unknownself-reportedNaN
- Spearman Dot on Unknownself-reportedNaN
- Pearson Max on Unknownself-reportedNaN
- Spearman Max on Unknownself-reportedNaN