alpcansoydas's picture
Add new SentenceTransformer model
c706e31 verified
metadata
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:25110
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: APPLE iPhone 16 PRO MAX 512GB
    sentences:
      - Communications Devices and Accessories
      - Communications Devices and Accessories
      - Communications Devices and Accessories
  - source_sentence: CISCO.CISCO 878-K9 G.SHDSL SECURİTY ROUTER
    sentences:
      - Communications Devices and Accessories
      - Data Voice or Multimedia Network Equipment or Platforms and Accessories
      - Computer Equipment and Accessories
  - source_sentence: iPhone 14 36 months Tier 3+
    sentences:
      - Heating and ventilation and air circulation
      - Portable Structure Building Components
      - >-
        Components for information technology or broadcasting or
        telecommunications
  - source_sentence: Elektrik Sayacı Optik Okuyucu
    sentences:
      - >-
        Components for information technology or broadcasting or
        telecommunications
      - Power sources
      - >-
        Components for information technology or broadcasting or
        telecommunications
  - source_sentence: >-
      Power Cable,600V/1000V,ROV-K,4mm^2,Black Jacket(The Color Of Core Is Blue
      And Brown),36A,Shielded Style Outdoor Cable
    sentences:
      - Electrical equipment and components and supplies
      - Communications Devices and Accessories
      - Power sources
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: .nan
            name: Pearson Cosine
          - type: spearman_cosine
            value: .nan
            name: Spearman Cosine
          - type: pearson_manhattan
            value: .nan
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: .nan
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: .nan
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: .nan
            name: Spearman Euclidean
          - type: pearson_dot
            value: .nan
            name: Pearson Dot
          - type: spearman_dot
            value: .nan
            name: Spearman Dot
          - type: pearson_max
            value: .nan
            name: Pearson Max
          - type: spearman_max
            value: .nan
            name: Spearman Max

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-16.10.24-ifhavemorethan10sampleperfamily")
# Run inference
sentences = [
    'Power Cable,600V/1000V,ROV-K,4mm^2,Black Jacket(The Color Of Core Is Blue And Brown),36A,Shielded Style Outdoor Cable',
    'Electrical equipment and components and supplies',
    'Power sources',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine nan
spearman_cosine nan
pearson_manhattan nan
spearman_manhattan nan
pearson_euclidean nan
spearman_euclidean nan
pearson_dot nan
spearman_dot nan
pearson_max nan
spearman_max nan

Training Details

Training Dataset

Unnamed Dataset

  • Size: 25,110 training samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 3 tokens
    • mean: 17.04 tokens
    • max: 83 tokens
    • min: 3 tokens
    • mean: 7.97 tokens
    • max: 12 tokens
  • Samples:
    sentence1 sentence2
    USRC20(RH2288,2E5-2680v2,1616G,12600GB(2.5 )+2600GB(2.5 ),410GE,4GE,DC)-OS RAID1,DATA RAID5+Hotspare,No DVDRW Computer Equipment and Accessories
    100m 160x10 Kafes Kule Heavy construction machinery and equipment
    Air4820 Superonline Video Bridge Data Voice or Multimedia Network Equipment or Platforms and Accessories
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 5,381 evaluation samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 3 tokens
    • mean: 16.75 tokens
    • max: 71 tokens
    • min: 3 tokens
    • mean: 7.89 tokens
    • max: 12 tokens
  • Samples:
    sentence1 sentence2
    SNTC-24X7X4 Cisco ISR 4331 (2GE,2NIM,4G FLASH,4G DRA Data Voice or Multimedia Network Equipment or Platforms and Accessories
    Iridium GO Ecex Communications Devices and Accessories
    LC/LC SM 9/125 DX 1.8mm Lszh L 10m Components for information technology or broadcasting or telecommunications
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss spearman_max
0.0637 100 2.2804 1.9512 nan
0.1274 200 1.8803 1.9189 nan
0.1911 300 1.8687 1.7873 nan
0.2548 400 1.7455 1.7351 nan
0.3185 500 1.714 1.6717 nan
0.3822 600 1.6956 1.6789 nan
0.4459 700 1.7134 1.6407 nan
0.5096 800 1.7059 1.6175 nan
0.5732 900 1.674 1.6256 nan
0.6369 1000 1.6725 1.5826 nan
0.7006 1100 1.6238 1.5815 nan
0.7643 1200 1.5819 1.5684 nan
0.8280 1300 1.526 1.5511 nan
0.8917 1400 1.4976 1.5496 nan
0.9554 1500 1.5709 1.5358 nan
1.0191 1600 1.4731 1.5498 nan
1.0828 1700 1.3914 1.5280 nan
1.1465 1800 1.4137 1.4980 nan
1.2102 1900 1.3964 1.5012 nan
1.2739 2000 1.4244 1.4972 nan
1.3376 2100 1.4567 1.4943 nan
1.4013 2200 1.4224 1.4880 nan
1.4650 2300 1.4452 1.4685 nan
1.5287 2400 1.3843 1.4976 nan
1.5924 2500 1.4538 1.4715 nan
1.6561 2600 1.3864 1.4738 nan
1.7197 2700 1.3514 1.4724 nan
1.7834 2800 1.4295 1.4538 nan
1.8471 2900 1.3631 1.4629 nan
1.9108 3000 1.3654 1.4588 nan
1.9745 3100 1.3335 1.4552 nan

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}