Llama-3-8B-Instruct-Medical-QLoRA
This model is a adapter for meta-llama/Meta-Llama-3-8B-Instruct, finetuned on a subset of given datasets. It achieves the following results on the evaluation set:
- Loss: 1.1646
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.217 | 0.0591 | 20 | 1.5876 |
1.4821 | 0.1182 | 40 | 1.3649 |
1.3217 | 0.1773 | 60 | 1.2501 |
1.2392 | 0.2363 | 80 | 1.2201 |
1.1963 | 0.2954 | 100 | 1.2075 |
1.1829 | 0.3545 | 120 | 1.1997 |
1.2229 | 0.4136 | 140 | 1.1917 |
1.2016 | 0.4727 | 160 | 1.1868 |
1.1753 | 0.5318 | 180 | 1.1831 |
1.216 | 0.5908 | 200 | 1.1790 |
1.1831 | 0.6499 | 220 | 1.1761 |
1.1941 | 0.7090 | 240 | 1.1730 |
1.2566 | 0.7681 | 260 | 1.1702 |
1.1908 | 0.8272 | 280 | 1.1681 |
1.1586 | 0.8863 | 300 | 1.1665 |
1.1956 | 0.9453 | 320 | 1.1646 |
Framework versions
- PEFT 0.11.0
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for ae-aydin/Llama-3-8B-Instruct-Medical-QLoRA
Base model
meta-llama/Meta-Llama-3-8B-Instruct