Edit model card

Exllamav2 quant (exl2 / 8.0 bpw) made with ExLlamaV2 v0.0.21

Other EXL2 quants:

Quant Model Size lm_head
2.2
1152 MB
6
2.5
1192 MB
6
3.0
1265 MB
6
3.5
1337 MB
6
3.75
1373 MB
6
4.0
1410 MB
6
4.25
1446 MB
6
5.0
1555 MB
6
6.0
1759 MB
8
6.5
1832 MB
8
8.0
2032 MB
8

Qwen1.5-Wukong-1.8B

image/jpeg

Join Our Discord! https://discord.gg/cognitivecomputations

Qwen1.5-Wukong-1.8B is a dealigned chat finetune of the original fantastic Qwen1.5-1.8B model by the Qwen team.

This model was trained on a selection of datasets from Cognitive Computations Dolphin 2.9 https://erichartford.com/dolphin 🐬

This model was trained for 3 epochs.

Example Outputs

TBD

Orignal Model Card Below

Qwen1.5-1.8B

Introduction

Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:

  • 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;
  • Significant performance improvement in Chat models;
  • Multilingual support of both base and chat models;
  • Stable support of 32K context length for models of all sizes
  • No need of trust_remote_code.

For more details, please refer to our blog post and GitHub repo.

Model Details

Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.

Requirements

The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install transformers>=4.37.0, or you might encounter the following error:

KeyError: 'qwen2'.

Usage

We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.

Citation

If you find our work helpful, feel free to give us a cite.

@article{qwen,
  title={Qwen Technical Report},
  author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
  journal={arXiv preprint arXiv:2309.16609},
  year={2023}
}
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.