Bilateral Reference for High-Resolution Dichotomous Image Segmentation

Peng Zheng 1,4,5,6,  Dehong Gao 2,  Deng-Ping Fan 1*,  Li Liu 3,  Jorma Laaksonen 4,  Wanli Ouyang 5,  Nicu Sebe 6
1 Nankai University  2 Northwestern Polytechnical University  3 National University of Defense Technology  4 Aalto University  5 Shanghai AI Laboratory  6 University of Trento 

This repo holds the official weights of BiRefNet_lite trained in 2K resolution.

Training Sets:

  • DIS5K (except DIS-VD)
  • HRS10K
  • UHRSD
  • P3M-10k (except TE-P3M-500-NP)
  • TR-humans
  • AM-2k
  • AIM-500
  • Human-2k (synthesized with BG-20k)
  • Distinctions-646 (synthesized with BG-20k)
  • HIM2K
  • PPM-100

HR samples selection:

size_h, size_w = 1440, 2560
ratio = 0.8
h, w = image.shape[:2]
h >= size_h and w >= size_w or (h > size_h * ratio and w > size_w * ratio)

Validation Sets:

  • DIS-VD
  • TE-P3M-500-NP

Performance:

Dataset Method maxFm wFmeasure MAE Smeasure meanEm HCE maxEm meanFm adpEm adpFm mBA maxBIoU meanBIoU
DIS-VD BiRefNet_lite-2K-general--epoch_232 .867 .831 .045 .879 .919 952 .925 .858 .916 .847 .796 .750 .739
TE-P3M-500-NP BiRefNet_lite-2K-general--epoch_232 .993 .986 .009 .975 .986 .000 .993 .985 .833 .873 .825 .921 .891

Check the main BiRefNet model repo for more info and how to use it:
https://huggingface.co/ZhengPeng7/BiRefNet/blob/main/README.md

Remember to set the resolution of input images to 2K (2560, 1440) for better results when using this model.

Also check the GitHub repo of BiRefNet for all things you may want:
https://github.com/ZhengPeng7/BiRefNet

Acknowledgement:

  • Many thanks to @freepik for their generous support on GPU resources for training this model!

Citation

@article{zheng2024birefnet,
  title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
  author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
  journal={CAAI Artificial Intelligence Research},
  volume = {3},
  pages = {9150038},
  year={2024}
}
Downloads last month
22,505
Safetensors
Model size
44.4M params
Tensor type
I64
·
F32
·
Inference Examples
Inference API (serverless) does not yet support BiRefNet models for this pipeline type.