https://huggingface.co/timm/fastvit_ma36.apple_dist_in1k with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Perform image classification with Xenova/fastvit_ma36.apple_dist_in1k.

import { pipeline } from '@xenova/transformers';

// Create an image classification pipeline
const classifier = await pipeline('image-classification', 'Xenova/fastvit_ma36.apple_dist_in1k');

// Classify an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url, { topk: 5 });
console.log(output);
// [
//   { label: 'tiger, Panthera tigris', score: 0.821342945098877 },
//   { label: 'tiger cat', score: 0.03833380341529846 },
//   { label: 'lynx, catamount', score: 0.0009026902262121439 },
//   { label: 'jaguar, panther, Panthera onca, Felis onca', score: 0.0008144468883983791 },
//   { label: 'dhole, Cuon alpinus', score: 0.0006418420816771686 }
// ]

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
10
Inference Examples
Inference API (serverless) does not yet support transformers.js models for this pipeline type.

Model tree for Xenova/fastvit_ma36.apple_dist_in1k

Quantized
(1)
this model