Edit model card

t5-small-pointer-cstop_artificial

This model is a fine-tuned version of google/mt5-small on the cstop_artificial dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0816
  • Exact Match: 0.8050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Exact Match
2.08 28.5 200 0.3320 0.0376
0.272 57.13 400 0.1084 0.2630
0.0789 85.63 600 0.0830 0.3184
0.0355 114.25 800 0.0816 0.3363
0.0207 142.75 1000 0.0868 0.3292
0.014 171.38 1200 0.0952 0.3399
0.0099 199.88 1400 0.1089 0.3381
0.0076 228.5 1600 0.1104 0.3381
0.0057 257.13 1800 0.1153 0.3292
0.0048 285.63 2000 0.1153 0.3327
0.004 314.25 2200 0.1206 0.3363
0.0032 342.75 2400 0.1229 0.3363
0.0028 371.38 2600 0.1268 0.3381
0.0023 399.88 2800 0.1288 0.3399
0.002 428.5 3000 0.1292 0.3399

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.