Nous-Hermes-2-SUS-Chat-34B-Slerp
This is the model for Nous-Hermes-2-SUS-Chat-34B-Slerp. I used mergekit to merge models.
Prompt Templates
You can use these prompt templates, but I recommend using ChatML.
ChatML (NousResearch/Nous-Hermes-2-Yi-34B):
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
Human - Asistant (SUSTech/SUS-Chat-34B):
### Human: {user}
### Assistant: {asistant}
Yaml Config
slices:
- sources:
- model: Nous-Hermes-2-Yi-34B
layer_range: [0, 60]
- model: SUS-Chat-34B
layer_range: [0, 60]
merge_method: slerp
base_model: Yi-34B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
tokenizer_source: union
dtype: bfloat16
Quantizationed versions
Quantizationed versions of this model is available thanks to TheBloke.
GPTQ
GGUF
AWQ
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.06 |
AI2 Reasoning Challenge (25-Shot) | 66.72 |
HellaSwag (10-Shot) | 84.97 |
MMLU (5-Shot) | 77.00 |
TruthfulQA (0-shot) | 59.23 |
Winogrande (5-shot) | 83.58 |
GSM8k (5-shot) | 72.86 |
- Downloads last month
- 3,279
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Weyaxi/Nous-Hermes-2-SUS-Chat-34B-Slerp
Space using Weyaxi/Nous-Hermes-2-SUS-Chat-34B-Slerp 1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.720
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.970
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard77.000
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard59.230
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard83.580
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard72.860