Edit model card

Vishnu-add/distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1999
  • Validation Loss: 0.0736
  • Train Precision: 0.9035
  • Train Recall: 0.9153
  • Train F1: 0.9094
  • Train Accuracy: 0.9786
  • Epoch: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.1999 0.0736 0.9035 0.9153 0.9094 0.9786 0

Framework versions

  • Transformers 4.34.1
  • TensorFlow 2.12.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Vishnu-add/distilbert-base-uncased-finetuned-ner

Finetuned
(6775)
this model