Mistral_CN_pretrain

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 250

Training results

Training Loss Epoch Step Validation Loss
2.6683 0.28 10 1.9046
1.6163 0.56 20 1.4504
1.4282 0.83 30 1.3945
1.3711 1.11 40 1.3662
1.3638 1.39 50 1.3578
1.3366 1.67 60 1.3611
1.3283 1.94 70 1.3405
1.322 2.22 80 1.3464
1.3165 2.5 90 1.3409
1.304 2.78 100 1.3355
1.3067 3.06 110 1.3495
1.2947 3.33 120 1.3337
1.2883 3.61 130 1.3396
1.2965 3.89 140 1.3391
1.2756 4.17 150 1.3404
1.265 4.44 160 1.3405
1.2801 4.72 170 1.3407
1.2661 5.0 180 1.3325
1.2489 5.28 190 1.3515
1.2529 5.56 200 1.3461
1.2576 5.83 210 1.3524
1.2512 6.11 220 1.3476
1.2358 6.39 230 1.3607
1.2469 6.67 240 1.3618
1.2341 6.94 250 1.3577

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
4.07B params
Tensor type
F32
BF16
U8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for VikrantRamesh/Mistral_CN_pretrain

Quantized
(172)
this model