ViditRaj/Distil_BERT_Hindi_Ads_Classifier_test_set
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1005
- Validation Loss: 0.3847
- Train Accuracy: 0.88
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 420, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.3727 | 0.3213 | 0.855 | 0 |
0.2185 | 0.3729 | 0.865 | 1 |
0.1628 | 0.4165 | 0.865 | 2 |
0.1243 | 0.3451 | 0.88 | 3 |
0.1005 | 0.3847 | 0.88 | 4 |
Framework versions
- Transformers 4.27.3
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.