Edit model card

robbert_dataaugmentation

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7814
  • Precisions: 0.8515
  • Recall: 0.8094
  • F-measure: 0.8265
  • Accuracy: 0.9039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.5813 1.0 285 0.4311 0.7695 0.7413 0.7537 0.8704
0.2533 2.0 570 0.4952 0.8339 0.7501 0.7745 0.8801
0.1216 3.0 855 0.5067 0.8403 0.7968 0.8148 0.8932
0.0685 4.0 1140 0.6121 0.8041 0.7972 0.7963 0.8886
0.0478 5.0 1425 0.6603 0.8239 0.7820 0.7983 0.8893
0.0294 6.0 1710 0.7029 0.8190 0.8029 0.8083 0.8954
0.0147 7.0 1995 0.7219 0.8332 0.8198 0.8227 0.8991
0.0142 8.0 2280 0.7702 0.8330 0.7953 0.8109 0.8961
0.0099 9.0 2565 0.7670 0.8340 0.7943 0.8086 0.8972
0.0044 10.0 2850 0.8132 0.8434 0.8026 0.8193 0.9025
0.0058 11.0 3135 0.7757 0.8468 0.8100 0.8253 0.9033
0.0046 12.0 3420 0.7814 0.8515 0.8094 0.8265 0.9039
0.0029 13.0 3705 0.8057 0.8494 0.8046 0.8229 0.9029
0.0012 14.0 3990 0.7994 0.8492 0.8047 0.8230 0.9031

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/robbert_dataaugmentation

Finetuned
(40)
this model