bge_based_arg_minibio_matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Thyme233/bge_based_arg_minibio_matryoshka")
# Run inference
sentences = [
'Which proteins are regulated by Nrf2?',
'Keap1-Nrf2 system is known as a sensor of electrophilic compounds, and protects cells from oxidative stress through induction of various antioxidant enzymes.',
'Muenke syndrome is an autosomal dominant disorder characterized by coronal suture craniosynostosis, hearing loss, developmental delay, carpal and tarsal fusions, and the presence of the Pro250Arg mutation in the FGFR3 gene. Muenke syndrome is characterized by coronal craniosynostosis (bilateral more often than unilateral), hearing loss, developmental delay, and carpal and/or tarsal bone coalition. Tarsal coalition is a distinct feature of Muenke syndrome and has been reported since the initial description of the disorder in the 1990s. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.8559 | 0.8496 | 0.8432 | 0.8263 | 0.7881 |
cosine_accuracy@3 | 0.9386 | 0.9343 | 0.9301 | 0.9131 | 0.8919 |
cosine_accuracy@5 | 0.9534 | 0.9534 | 0.9513 | 0.9386 | 0.911 |
cosine_accuracy@10 | 0.9725 | 0.9746 | 0.9661 | 0.9555 | 0.9301 |
cosine_precision@1 | 0.8559 | 0.8496 | 0.8432 | 0.8263 | 0.7881 |
cosine_precision@3 | 0.3129 | 0.3114 | 0.31 | 0.3044 | 0.2973 |
cosine_precision@5 | 0.1907 | 0.1907 | 0.1903 | 0.1877 | 0.1822 |
cosine_precision@10 | 0.0972 | 0.0975 | 0.0966 | 0.0956 | 0.093 |
cosine_recall@1 | 0.8559 | 0.8496 | 0.8432 | 0.8263 | 0.7881 |
cosine_recall@3 | 0.9386 | 0.9343 | 0.9301 | 0.9131 | 0.8919 |
cosine_recall@5 | 0.9534 | 0.9534 | 0.9513 | 0.9386 | 0.911 |
cosine_recall@10 | 0.9725 | 0.9746 | 0.9661 | 0.9555 | 0.9301 |
cosine_ndcg@10 | 0.9176 | 0.916 | 0.9096 | 0.8962 | 0.8642 |
cosine_mrr@10 | 0.8996 | 0.8969 | 0.891 | 0.8767 | 0.8426 |
cosine_map@100 | 0.9002 | 0.8973 | 0.8918 | 0.878 | 0.8445 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 4,247 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 6 tokens
- mean: 15.83 tokens
- max: 49 tokens
- min: 3 tokens
- mean: 59.36 tokens
- max: 512 tokens
- Samples:
question answer Is TNNI3K a cardiac-specific protein?
Yes, TNNI3K is highly expressed in heart but is undetectable in other tissues.
Which are the effects of ALDH2 deficiency?
In alcohol drinkers, ALDH2-deficiency is a well-known risk factor for upper aerodigestive tract cancers, i.e., head and neck cancer and esophageal cancer. Diabetic patients with ALDH2 mutations are predisposed to worse diastolic dysfunction.
These data demonstrate that ALDH2 deficiency enhances EtOH-induced disruption of intestinal epithelial tight junctions, barrier dysfunction, and liver damage.Has intepirdine been evaluated in clinical trials? (November 2017)
Yes, intepirdine was in Phase III clinical trials in November 2017.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.9624 | 8 | - | 0.9242 | 0.9186 | 0.9157 | 0.8907 | 0.8504 |
1.2030 | 10 | 1.6488 | - | - | - | - | - |
1.9248 | 16 | - | 0.9166 | 0.9169 | 0.9099 | 0.8949 | 0.8623 |
2.4060 | 20 | 0.6601 | - | - | - | - | - |
2.8872 | 24 | - | 0.9173 | 0.916 | 0.9096 | 0.8966 | 0.8645 |
3.6090 | 30 | 0.5199 | - | - | - | - | - |
3.8496 | 32 | - | 0.9176 | 0.9160 | 0.9096 | 0.8962 | 0.8642 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.8
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Thyme233/bge_based_arg_minibio_matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.856
- Cosine Accuracy@3 on dim 768self-reported0.939
- Cosine Accuracy@5 on dim 768self-reported0.953
- Cosine Accuracy@10 on dim 768self-reported0.972
- Cosine Precision@1 on dim 768self-reported0.856
- Cosine Precision@3 on dim 768self-reported0.313
- Cosine Precision@5 on dim 768self-reported0.191
- Cosine Precision@10 on dim 768self-reported0.097
- Cosine Recall@1 on dim 768self-reported0.856
- Cosine Recall@3 on dim 768self-reported0.939