Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Gorilla OpenFunctions V1 - GPTQ

Description

This repo contains GPTQ model files for Gorilla LLM (UC Berkeley's Gorilla OpenFunctions V1.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These files were quantised using hardware kindly provided by Massed Compute.

Repositories available

Prompt template: Gorilla-OpenFunctions

USER: <<question>> {prompt} <<function>> {{function_string}}
ASSISTANT:

Licensing

The creator of the source model has listed its license as apache-2.0, and this quantization has therefore used that same license.

As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.

In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: Gorilla LLM (UC Berkeley's Gorilla OpenFunctions V1.

Known compatible clients / servers

These GPTQ models are known to work in the following inference servers/webuis.

This may not be a complete list; if you know of others, please let me know!

Provided files, and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 128 Yes 0.1 code 4096 3.90 GB Yes 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 code 4096 4.28 GB Yes 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 code 4096 7.01 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 code 4096 7.16 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy.
gptq-8bit-32g-actorder_True 8 32 Yes 0.1 code 4096 7.62 GB No 8-bit, with group size 32g and Act Order for maximum inference quality.
gptq-4bit-64g-actorder_True 4 64 Yes 0.1 code 4096 4.02 GB Yes 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy.

How to download, including from branches

In text-generation-webui

To download from the main branch, enter TheBloke/gorilla-openfunctions-v1-GPTQ in the "Download model" box.

To download from another branch, add :branchname to the end of the download name, eg TheBloke/gorilla-openfunctions-v1-GPTQ:gptq-4bit-32g-actorder_True

From the command line

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

To download the main branch to a folder called gorilla-openfunctions-v1-GPTQ:

mkdir gorilla-openfunctions-v1-GPTQ
huggingface-cli download TheBloke/gorilla-openfunctions-v1-GPTQ --local-dir gorilla-openfunctions-v1-GPTQ --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir gorilla-openfunctions-v1-GPTQ
huggingface-cli download TheBloke/gorilla-openfunctions-v1-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir gorilla-openfunctions-v1-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage

If you remove the --local-dir-use-symlinks False parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface), and symlinks will be added to the specified --local-dir, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the HF_HOME environment variable, and/or the --cache-dir parameter to huggingface-cli.

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

mkdir gorilla-openfunctions-v1-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/gorilla-openfunctions-v1-GPTQ --local-dir gorilla-openfunctions-v1-GPTQ --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

With git (not recommended)

To clone a specific branch with git, use a command like this:

git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/gorilla-openfunctions-v1-GPTQ

Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git folder as a blob.)

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.

  2. Under Download custom model or LoRA, enter TheBloke/gorilla-openfunctions-v1-GPTQ.

    • To download from a specific branch, enter for example TheBloke/gorilla-openfunctions-v1-GPTQ:gptq-4bit-32g-actorder_True
    • see Provided Files above for the list of branches for each option.
  3. Click Download.

  4. The model will start downloading. Once it's finished it will say "Done".

  5. In the top left, click the refresh icon next to Model.

  6. In the Model dropdown, choose the model you just downloaded: gorilla-openfunctions-v1-GPTQ

  7. The model will automatically load, and is now ready for use!

  8. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.

    • Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  9. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Serving this model from Text Generation Inference (TGI)

It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/gorilla-openfunctions-v1-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''USER: <<question>> {prompt} <<function>> {{function_string}}
ASSISTANT:
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: {response}")

Python code example: inference from this GPTQ model

Install the necessary packages

Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

pip3 install --upgrade transformers optimum
# If using PyTorch 2.1 + CUDA 12.x:
pip3 install --upgrade auto-gptq
# or, if using PyTorch 2.1 + CUDA 11.x:
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.5.1
pip3 install .

Example Python code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/gorilla-openfunctions-v1-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''USER: <<question>> {prompt} <<function>> {{function_string}}
ASSISTANT:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.

ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.

For a list of clients/servers, please see "Known compatible clients / servers", above.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Gorilla LLM (UC Berkeley's Gorilla OpenFunctions V1

🚀 Try it out on Colab
📣 Read more in our OpenFunctions blog release

Introduction

Gorilla OpenFunctions extends Large Language Model(LLM) Chat Completion feature to formulate executable APIs call given natural language instructions and API context.

Models Available

model functionality
gorilla-openfunctions-v0 Given a function, and user intent, returns properly formatted json with the right arguments
gorilla-openfunctions-v1 + Parallel functions, and can choose between functions

Example Usage (Hosted)

  1. OpenFunctions is compatible with OpenAI Functions
!pip install openai==0.28.1
  1. Point to Gorilla hosted servers
import openai

def get_gorilla_response(prompt="Call me an Uber ride type \"Plus\" in Berkeley at zipcode 94704 in 10 minutes", model="gorilla-openfunctions-v0", functions=[]):
  openai.api_key = "EMPTY"
  openai.api_base = "http://luigi.millennium.berkeley.edu:8000/v1"
  try:
    completion = openai.ChatCompletion.create(
      model="gorilla-openfunctions-v1",
      temperature=0.0,
      messages=[{"role": "user", "content": prompt}],
      functions=functions,
    )
    return completion.choices[0].message.content
  except Exception as e:
    print(e, model, prompt)
  1. Pass the user argument and set of functions, Gorilla OpenFunctions returns a fully formatted json
query = "Call me an Uber ride type \"Plus\" in Berkeley at zipcode 94704 in 10 minutes"
functions = [
    {
        "name": "Uber Carpool",
        "api_name": "uber.ride",
        "description": "Find suitable ride for customers given the location, type of ride, and the amount of time the customer is willing to wait as parameters",
        "parameters":  [{"name": "loc", "description": "location of the starting place of the uber ride"}, {"name":"type", "enum": ["plus", "comfort", "black"], "description": "types of uber ride user is ordering"}, {"name": "time", "description": "the amount of time in minutes the customer is willing to wait"}]
    }
]
get_gorilla_response(query, functions=functions)
  1. Expected output
uber.ride(loc="berkeley", type="plus", time=10)

Example Usage (Run Locally)

import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

def get_prompt(user_query: str, functions: list = []) -> str:
    """
    Generates a conversation prompt based on the user's query and a list of functions.

    Parameters:
    - user_query (str): The user's query.
    - functions (list): A list of functions to include in the prompt.

    Returns:
    - str: The formatted conversation prompt.
    """
    if len(functions) == 0:
        return f"USER: <<question>> {user_query}\nASSISTANT: "
    functions_string = json.dumps(functions)
    return f"USER: <<question>> {user_query} <<function>> {functions_string}\nASSISTANT: "

# Device setup
device : str = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Model and tokenizer setup
model_id : str = "gorilla-llm/gorilla-openfunctions-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True)

# Move model to device
model.to(device)

# Pipeline setup
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=128,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
)

# Example usage
query: str = "Call me an Uber ride type \"Plus\" in Berkeley at zipcode 94704 in 10 minutes"
functions = [
    {
        "name": "Uber Carpool",
        "api_name": "uber.ride",
        "description": "Find suitable ride for customers given the location, type of ride, and the amount of time the customer is willing to wait as parameters",
        "parameters":  [
            {"name": "loc", "description": "Location of the starting place of the Uber ride"},
            {"name": "type", "enum": ["plus", "comfort", "black"], "description": "Types of Uber ride user is ordering"},
            {"name": "time", "description": "The amount of time in minutes the customer is willing to wait"}
        ]
    }
]

# Generate prompt and obtain model output
prompt = get_prompt(query, functions=functions)
output = pipe(prompt)

print(output)

Contributing

All the models, and data used to train the models is released under Apache 2.0. Gorilla is an open source effort from UC Berkeley and we welcome contributors. Please email us your comments, criticism, and questions. More information about the project can be found at https://gorilla.cs.berkeley.edu/

Downloads last month
9
Safetensors
Model size
1.13B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/gorilla-openfunctions-v1-GPTQ

Quantized
(6)
this model