TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
EM German Mistral v01 - GPTQ
- Model creator: Jan Philipp Harries
- Original model: EM German Mistral v01
Description
This repo contains GPTQ model files for Jan Philipp Harries's EM German Mistral v01.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Jan Philipp Harries's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: EmGerman
Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT:
Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | 128 | Yes | 0.1 | German Quad | 8192 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | German Quad | 8192 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | German Quad | 8192 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | German Quad | 8192 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
gptq-8bit-32g-actorder_True | 8 | 32 | Yes | 0.1 | German Quad | 8192 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
gptq-4bit-64g-actorder_True | 4 | 64 | Yes | 0.1 | German Quad | 8192 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
How to download, including from branches
In text-generation-webui
To download from the main
branch, enter TheBloke/em_german_mistral_v01-GPTQ
in the "Download model" box.
To download from another branch, add :branchname
to the end of the download name, eg TheBloke/em_german_mistral_v01-GPTQ:gptq-4bit-32g-actorder_True
From the command line
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub
To download the main
branch to a folder called em_german_mistral_v01-GPTQ
:
mkdir em_german_mistral_v01-GPTQ
huggingface-cli download TheBloke/em_german_mistral_v01-GPTQ --local-dir em_german_mistral_v01-GPTQ --local-dir-use-symlinks False
To download from a different branch, add the --revision
parameter:
mkdir em_german_mistral_v01-GPTQ
huggingface-cli download TheBloke/em_german_mistral_v01-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir em_german_mistral_v01-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage
If you remove the --local-dir-use-symlinks False
parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: ~/.cache/huggingface
), and symlinks will be added to the specified --local-dir
, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the HF_HOME
environment variable, and/or the --cache-dir
parameter to huggingface-cli
.
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
mkdir em_german_mistral_v01-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/em_german_mistral_v01-GPTQ --local-dir em_german_mistral_v01-GPTQ --local-dir-use-symlinks False
Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1
before the download command.
With git
(not recommended)
To clone a specific branch with git
, use a command like this:
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/em_german_mistral_v01-GPTQ
Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub
, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git
folder as a blob.)
How to easily download and use this model in text-generation-webui.
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/em_german_mistral_v01-GPTQ
.
- To download from a specific branch, enter for example
TheBloke/em_german_mistral_v01-GPTQ:gptq-4bit-32g-actorder_True
- see Provided Files above for the list of branches for each option.
- Click Download.
- The model will start downloading. Once it's finished it will say "Done".
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
em_german_mistral_v01-GPTQ
- The model will automatically load, and is now ready for use!
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/em_german_mistral_v01-GPTQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT:
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
How to use this GPTQ model from Python code
Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
You can then use the following code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/em_german_mistral_v01-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT:
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with Occ4m's GPTQ-for-LLaMa fork.
ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
Huggingface Text Generation Inference (TGI) is compatible with all GPTQ models.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Jan Philipp Harries's EM German Mistral v01
EM German Mistral 7b (Alpha)
EM German (v01) is an experimental llama2 and mistral-based model family, finetuned on a large dataset of various instructions in German language. The models are optimized for German text, providing proficiency in understanding, generating, and interacting with German language content.
This is a very first experimental version of Mistrals 7b model. This is still based on the HF LLama Model and not on the Mistral implementation, lacking features like GQA and sliding windows - use at your own discretion. For more mature models, please look at the llama-2 based models of the EM family (see links below).
Links & Demos
We will publish further instructions, updates and code-snippets in the project's Github-Repo.
Model Links
Base Model | HF | GPTQ | GGUF | AWQ |
---|---|---|---|---|
Llama2 7b | Link | Link | Link | soon |
Llama2 13b | Link | Link | soon | soon |
Llama2 70b | Link | Link | Link | soon |
Mistral 7b | Link | soon | soon | tbc |
LeoLm 7b | soon | soon | soon | tbc |
LeoLM 13b | soon | soon | soon | tbc |
Demos:
You can use some of the models with free google Colab instances (e.g. the 7bn model in 8bit or the 13b model with GPTQ):
- Example Colab Notebook for 13b with GPTQ
- Example Colab Notebook for 7b with 8bit-Loading
- Further Examples for LLM apps will follow soon...
Prompt Format
This model follows the Vicuna format without linebreaks (but should work with linebreaks as well). The format is as follows:
Du bist ein hilfreicher Assistent. USER: <instruction> ASSISTANT:
You can swap the standard system prompt for a better suited one (see below for RAG-tasks).
Results
Attached a few example outputs. I also developed a few small German benchmarks (based on the Eleuther LM Evaluation Harness), which I will publish soon.
Example Output
Prompt:
Du bist ein hilfreicher Assistent USER: Ein Buch hat 500 Seiten. Jede Seite enthält 300 Wörter. Wie viele Wörter sind im gesamten Buch enthalten? ASSISTANT:
Response EM 7b v01
Die Gesamtzahl der Wörter in dem Buch kann berechnet werden, indem man die Anzahl der Wörter pro Seite mit der Gesamtzahl der Seiten multipliziert.
Gesamtzahl der Wörter = Anzahl der Wörter pro Seite * Gesamtzahl der Seiten = 300 Wörter pro Seite * 500 Seiten = 150.000 Wörter
Das Buch enthält also insgesamt 150.000 Wörter.
Prompt:
Du bist ein hilfreicher Assistent USER: Erläutere die Grundprinzipien der evolutionären Biologie und Genetik, indem du den Prozess der natürlichen Selektion, die Rolle von Mutationen und genetischer Drift sowie das Konzept der adaptiven Radiation erklärst. ASSISTANT:
Response EM 7b v01
Die Evolutionäre Biologie und Genetik sind zwei intim verwandte Disziplinen, die sich mit dem Studium des Verhaltens und der Entwicklung von Organismen in der Natur befassen. Sie untersuchen, wie Arten sich im Laufe der Zeit entwickeln und wie diese Veränderungen genetisch bedingt sind.
1. Natürliche Selektion: Die natürliche Selektion ist ein grundlegendes Prinzip in der Evolutionäre Biologie. Es besagt, dass Individuen innerhalb einer Spezies unterschiedliche Fähigkeiten oder Merkmale aufweisen können. Diese Merkmale beeinflussen ihre Überlebens- und Fortpflanzungsrate. Diejenigen mit Vorteilen haben eine höhere Wahrscheinlichkeit, ihre Gene an zukünftige Generationen weiterzugeben und so die Art im Laufe der Zeit zu verändern.
2. Rolle von Mutationen: Mutationen sind Veränderungen im Genom eines Organismus, die entweder durch zufällige Fehler während der Replikation oder durch Exposition gegenüber Strahlung verursacht werden. Diese Veränderungen können dazu führen, dass ein Individuum neue Eigenschaften aufweist, die es im Kampf ums Überleben vorteilhaft machen könnten. Diese Mutationen werden dann von der natürlichen Selektion beeinflusst und können so zur Entwicklung neuer Arten beitragen.
3. Genetische Drift: Genetische Drift ist ein zufälliger Prozess, der durch die Verteilung von Allelen in einer Population stattfindet. Wenn eine Population kleiner wird oder wenn die Überlebens- und Fortpflanzungsraten zwischen den Individuen variieren, kann dies dazu führen, dass bestimmte Gene stärker oder weniger häufig werden. Dies kann dazu führen, dass die Population im Laufe der Zeit unterschiedliche Merkmale aufweist.
4. Adaptive Radiation: Adaptive Radiation ist ein Prozess, bei dem eine Art mehrere verschiedene Linien auslässt, die sich auf verschiedene Weise an ihre Umgebung anpassen. Dies geschieht normalerweise, wenn die Umwelt sich ändert und die Art neue Fähigkeiten benötigt, um überleben zu können. Die verschiedenen Linien können dann unterschiedliche Eigenschaften entwickeln, die ihnen helfen, in dieser neuen Umgebung zu überleben.
Factual Retrieval / RAG
EM Models offer a special format for Factual Retrieval/RAG that is optimized for minimizing hallucinations. We use the same format as Airoboros for this:
Example
Prompt
Du bist ein hilfreicher Assistent. Für die folgende Aufgabe stehen dir zwischen den tags BEGININPUT und ENDINPUT mehrere Quellen zur Verfügung. Metadaten zu den einzelnen Quellen wie Autor, URL o.ä. sind zwischen BEGINCONTEXT und ENDCONTEXT zu finden, danach folgt der Text der Quelle. Die eigentliche Aufgabe oder Frage ist zwischen BEGININSTRUCTION und ENDINCSTRUCTION zu finden. Beantworte diese wortwörtlich mit einem Zitat aus den Quellen. Sollten diese keine Antwort enthalten, antworte, dass auf Basis der gegebenen Informationen keine Antwort möglich ist! USER: BEGININPUT
BEGINCONTEXT
Url: https://www.jph.me
ENDCONTEXT
Das Wetter in Düsseldorf wird heute schön und sonnig!
ENDINPUT
BEGININSTRUCTION Was ist 1+1? ENDINSTRUCTION ASSISTANT:
Model response:
Mit den gegebenen Informationen ist diese Frage nicht zu beantworten.
Note that the model would normally always answer with the correct response to a trivial question like this but is trained to deny an answer, if there is no source between the BEGININPUT and ENDINPUT that provides a grounding.
If we keep the same Context/Input but ask instead:
BEGININSTRUCTION Wie wird das Wetter heute in Düsseldorf? Gebe die Quelle mit an! ENDINSTRUCTION ASSISTANT:
We get the correct answer with the source:
Das Wetter in Düsseldorf wird heute schön und sonnig! (Quelle: Url: https://www.jph.me)
Evaluation
I will publish some custom German benchmarks and the results for them soon.
Dataset
The dataset is a mixture of multi-turn chats, retrieval instructions and synthetically generated instructions spawning many topics and applications.
Use with tranformers
Unchanged from the base model:
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
# Hugging Face model_path
model_path = 'jphme/em_german_7b_v01'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='auto',
)
def ask_model(instruction, system='Du bist ein hilfreicher Assistent.'):
prompt=f"{system} USER: {instruction} ASSISTANT:"
input_tokens=tokenizer(prompt, return_tensors="pt").to(model.device)
output_tokens=model.generate(**input_tokens, max_new_tokens=200)[0]
answer=tokenizer.decode(output_tokens, skip_special_tokens=True)
return answer
print(ask_model("Nenne mir 10 gute Gründe dafür, heute Sport zu machen!"))
Limitations & Biases
This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
Acknowledgements:
Many thanks to winglian/caseus for his great work on Axolotl which I used to train the EM mdoels. I am also grateful to Jon Durbin and his Airoboros models and code from which I borrowed many ideas and code snippets.
The 70b model was trained with support of the OVH Cloud Startup Program.
Contact
I you are interested in customized LLMs for business applications, please get in contact with me via my website. I am also always happy about suggestions and feedback.
PS: I am also still searching for a Co-Founder.
Disclaimer:
The license on this model does not constitute legal advice. I am not responsible for the actions of third parties who use this model. This model should only be used for research purposes. The original Llama2 license applies and is distributed with the model files.
(Deutsch) EM German
EM German (v01) ist eine experimentelle, Llama2-basierte KI-Modellreihe, die in deutscher Sprache fine-getuned wurde.
Die Modelle sind für deutschen Text optimiert und können Inhalte in deutscher Sprache verstehen und generieren.
Dieses 7b-Modell wurde zusätzlich mit >3 Milliarden Token deutscher Texte vortrainiert.
Links & Demos
Im Github-Repo Repo werde ich weitere Beispiele und Code-Snippets veröffentlichen.
Model Links
Base Model | HF | GPTQ | GGUF | AWQ |
---|---|---|---|---|
Llama2 7b | Link | Link | Link | soon |
Llama2 13b | Link | Link | soon | soon |
Llama2 70b | Link | Link | Link | soon |
Mistral 7b | Link | soon | soon | tbc |
LeoLm 7b | soon | soon | soon | tbc |
LeoLM 13b | soon | soon | soon | tbc |
Colab:
Einige der Modelle können mit kostenlosen Google Colab-Instanzen verwendet werden (z.B. das 7b-Modell in 8-Bit oder das 13b-Modell mit GPTQ):
- Beispiel-Notebook 13b mit GPTQ
- Beispiel-Notebook 7b mit 8-Bit
- Weitere Beispiele für LLM-Apps folgen in Kürze...
Eingabeformat
Dieses Modell folgt dem Vicuna-Format ohne Zeilenumbrüche (sollte aber auch mit Zeilenumbrüchen funktionieren). Das Format lautet wie folgt:
Du bist ein hilfreicher Assistent. USER: <Anweisung> ASSISTANT:
Sie können das Standard-Systemprompt aber auch ändern (siehe unten für ein Beispiel bei Aufgaben mit externen Datenbanken).
Ergebnisse
Anbei einige Beispiele für Modell-Outputs. Wir werden demnächst einige kleine deutsche Benchmarks veröffentlichen (basierend auf dem Eleuther LM Evaluation Harness), die wir bei diesen Modellen bereits getstet haben.
Beispiel-Ausgaben
Prompt:
Du bist ein hilfreicher Assistent USER: Ein Buch hat 500 Seiten. Jede Seite enthält 300 Wörter. Wie viele Wörter sind im gesamten Buch enthalten? ASSISTANT:
Antwort EM 7b v01
Die Gesamtzahl der Wörter in dem Buch kann berechnet werden, indem man die Anzahl der Wörter pro Seite mit der Gesamtzahl der Seiten multipliziert.
Gesamtzahl der Wörter = Anzahl der Wörter pro Seite * Gesamtzahl der Seiten = 300 Wörter pro Seite * 500 Seiten = 150.000 Wörter
Das Buch enthält also insgesamt 150.000 Wörter.
Prompt:
Du bist ein hilfreicher Assistent USER: Erläutere die Grundprinzipien der evolutionären Biologie und Genetik, indem du den Prozess der natürlichen Selektion, die Rolle von Mutationen und genetischer Drift sowie das Konzept der adaptiven Radiation erklärst. ASSISTANT:
Antwort EM 7b v01:
Die Evolutionäre Biologie und Genetik sind zwei intim verwandte Disziplinen, die sich mit dem Studium des Verhaltens und der Entwicklung von Organismen in der Natur befassen. Sie untersuchen, wie Arten sich im Laufe der Zeit entwickeln und wie diese Veränderungen genetisch bedingt sind.
1. Natürliche Selektion: Die natürliche Selektion ist ein grundlegendes Prinzip in der Evolutionäre Biologie. Es besagt, dass Individuen innerhalb einer Spezies unterschiedliche Fähigkeiten oder Merkmale aufweisen können. Diese Merkmale beeinflussen ihre Überlebens- und Fortpflanzungsrate. Diejenigen mit Vorteilen haben eine höhere Wahrscheinlichkeit, ihre Gene an zukünftige Generationen weiterzugeben und so die Art im Laufe der Zeit zu verändern.
2. Rolle von Mutationen: Mutationen sind Veränderungen im Genom eines Organismus, die entweder durch zufällige Fehler während der Replikation oder durch Exposition gegenüber Strahlung verursacht werden. Diese Veränderungen können dazu führen, dass ein Individuum neue Eigenschaften aufweist, die es im Kampf ums Überleben vorteilhaft machen könnten. Diese Mutationen werden dann von der natürlichen Selektion beeinflusst und können so zur Entwicklung neuer Arten beitragen.
3. Genetische Drift: Genetische Drift ist ein zufälliger Prozess, der durch die Verteilung von Allelen in einer Population stattfindet. Wenn eine Population kleiner wird oder wenn die Überlebens- und Fortpflanzungsraten zwischen den Individuen variieren, kann dies dazu führen, dass bestimmte Gene stärker oder weniger häufig werden. Dies kann dazu führen, dass die Population im Laufe der Zeit unterschiedliche Merkmale aufweist.
4. Adaptive Radiation: Adaptive Radiation ist ein Prozess, bei dem eine Art mehrere verschiedene Linien auslässt, die sich auf verschiedene Weise an ihre Umgebung anpassen. Dies geschieht normalerweise, wenn die Umwelt sich ändert und die Art neue Fähigkeiten benötigt, um überleben zu können. Die verschiedenen Linien können dann unterschiedliche Eigenschaften entwickeln, die ihnen helfen, in dieser neuen Umgebung zu überleben.
Sachliche Abfrage / RAG
EM-Modelle bieten ein spezielles Format für RAG (also die Verwendung mit Informationen aus zusätzlichen externen Quellen wie Datenbanken oder Websiten), das für die Minimierung von Halluzinationen und Falscinformationen optimiert ist. Wir verwenden dasselbe Format wie Airoboros dafür.
Beispiel
Prompt
Du bist ein hilfreicher Assistent. Für die folgende Aufgabe stehen dir zwischen den tags BEGININPUT und ENDINPUT mehrere Quellen zur Verfügung. Metadaten zu den einzelnen Quellen wie Autor, URL o.ä. sind zwischen BEGINCONTEXT und ENDCONTEXT zu finden, danach folgt der Text der Quelle. Die eigentliche Aufgabe oder Frage ist zwischen BEGININSTRUCTION und ENDINCSTRUCTION zu finden. Beantworte diese wortwörtlich mit einem Zitat aus den Quellen. Sollten diese keine Antwort enthalten, antworte, dass auf Basis der gegebenen Informationen keine Antwort möglich ist! USER: BEGININPUT
BEGINCONTEXT
Url: https://www.jph.me
ENDCONTEXT
Das Wetter in Düsseldorf wird heute schön und sonnig!
ENDINPUT
BEGININSTRUCTION Was ist 1+1? ENDINSTRUCTION ASSISTANT:
Modellantwort:
Mit den gegebenen Informationen ist diese Frage nicht zu beantworten.
Hier würde das Modell normalerweise die (triviale) Antwort (2) geben, ist aber trainiert, keine Antwort zu geben, wenn es keine Quelle zwischen BEGININPUT und ENDINPUT gibt, die eine belegbare Antwort liefert.
Wenn wir anstattdessen fragen:
BEGININSTRUCTION Wie wird das Wetter heute in Düsseldorf? Gebe die Quelle mit an! ENDINSTRUCTION ASSISTANT:
Bekommen wir die korrekte Antwort mit Quellenangabe
Das Wetter in Düsseldorf wird heute schön und sonnig! (Quelle: Url: https://www.jph.me)
Evaluation
coming soon
Datensatz
Der Datensatz ist eine Mischung aus Multi-Turn-Chats, RAG Instructions und synthetisch generierten Finetuning-Daten, die viele Themen und Anwendungen abdecken.
Einschränkungen & Vorurteile
Dieses Modell kann sachlich falsche Ausgaben produzieren und sollte nur zu Forschubngszwecken verwendet werden.
Danksagungen:
Vielen Dank an winglian/caseus für seine großartige Arbeit an Axolotl, die ich zur Schulung der EM-Modelle verwendet habe. Ich bin auch Jon Durbin für seine Arioboros Modelle und Code-Schnipsel dankbar, von denen ich viele Ideen nutzen konnte.
Das 70b-Modell wurde mit Unterstützung des OVH Cloud Startup Program trainiert.
Kontakt
Wenn Sie an customized LLMs für geschäftliche Anwendungen interessiert sind, kontaktieren Sie mich bitte über meine Website. Ich freue mich auch immer über Anregungen und Feedback zu meinen Modellen.
PS: Ich suche auch immer noch einen Co-Founder für unser Startup, das sich noch im Stealth-Modus befindet.
Haftungsausschluss:
Ich bin nicht verantwortlich für die Handlungen Dritter, die dieses Modell verwenden. Dieses Modell sollte nur für Forschungszwecke verwendet werden. Die ursprüngliche Llama2-Lizenz gilt und wird mit den Modell-Dateien verteilt.
- Downloads last month
- 44
Model tree for TheBloke/em_german_mistral_v01-GPTQ
Base model
jphme/em_german_mistral_v01