DefaultCPUAllocator: not enough memory

#1
by VladCorvi - opened

Cant run this model on my rig with 32 gb ram and rtx 3050 8gb vram

Getting this error:
Traceback (most recent call last):
File “G:\LLM\oobabooga\text-generation-webui\server.py”, line 67, in load_model_wrapper
shared.model, shared.tokenizer = load_model(shared.model_name)
File “G:\LLM\oobabooga\text-generation-webui\modules\models.py”, line 159, in load_model
model = load_quantized(model_name)
File “G:\LLM\oobabooga\text-generation-webui\modules\GPTQ_loader.py”, line 175, in load_quantized
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
File “G:\LLM\oobabooga\text-generation-webui\repositories\GPTQ-for-LLaMa\llama_inference_offload.py”, line 221, in load_quant
make_quant(model, layers, wbits, groupsize)
File “G:\LLM\oobabooga\text-generation-webui\repositories\GPTQ-for-LLaMa\quant.py”, line 148, in make_quant
make_quant(child, names, bits, groupsize, name + ‘.’ + name1 if name != ‘’ else name1)
File “G:\LLM\oobabooga\text-generation-webui\repositories\GPTQ-for-LLaMa\quant.py”, line 148, in make_quant
make_quant(child, names, bits, groupsize, name + ‘.’ + name1 if name != ‘’ else name1)
File “G:\LLM\oobabooga\text-generation-webui\repositories\GPTQ-for-LLaMa\quant.py”, line 148, in make_quant
make_quant(child, names, bits, groupsize, name + ‘.’ + name1 if name != ‘’ else name1)
[Previous line repeated 1 more time]
File “G:\LLM\oobabooga\text-generation-webui\repositories\GPTQ-for-LLaMa\quant.py”, line 146, in make_quant
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
File “G:\LLM\oobabooga\text-generation-webui\repositories\GPTQ-for-LLaMa\quant.py”, line 161, in init
self.register_buffer(‘qweight’, torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
RuntimeError: [enforce fail at C:\cb\pytorch_1000000000000\work\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 13107200 bytes.

Have you been able to load other 13B GPTQ models OK?

I'm not quite sure what the best method for CPU offload is meant to be right now. Try using --pre_layer instead, eg --pre_layer 10. That's the CPU offload mode designed for GPTQ specifically

Thank you for a fast response! After increasing Windows page file to 128gb it's give me another error log. Also --pre_layer 10 is changed nothing.
For 13B GPTQ. I have WizardML-Unc-13b-Q5_1-ggml that running only on CPU but works well.

Traceback (most recent call last):
File “G:\LLM\oobabooga\text-generation-webui\server.py”, line 67, in load_model_wrapper
shared.model, shared.tokenizer = load_model(shared.model_name)
File “G:\LLM\oobabooga\text-generation-webui\modules\models.py”, line 159, in load_model
model = load_quantized(model_name)
File “G:\LLM\oobabooga\text-generation-webui\modules\GPTQ_loader.py”, line 175, in load_quantized
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, shared.args.pre_layer)
File “G:\LLM\oobabooga\text-generation-webui\repositories\GPTQ-for-LLaMa\llama_inference_offload.py”, line 226, in load_quant
model.load_state_dict(safe_load(checkpoint))
File “G:\LLM\oobabooga\installer_files\env\lib\site-packages\torch\nn\modules\module.py”, line 2041, in load_state_dict
raise RuntimeError(‘Error(s) in loading state_dict for {}:\n\t{}’.format(
RuntimeError: Error(s) in loading state_dict for LlamaForCausalLM:
Missing key(s) in state_dict: “model.layers.0.self_attn.k_proj.g_idx”, “model.layers.0.self_attn.o_proj.g_idx”, “model.layers.0.self_attn.q_proj.g_idx”, “model.layers.0.self_attn.v_proj.g_idx”, “model.layers.0.mlp.down_proj.g_idx”, “model.layers.0.mlp.gate_proj.g_idx”, “model.layers.0.mlp.up_proj.g_idx”, “model.layers.1.self_attn.k_proj.g_idx”, “model.layers.1.self_attn.o_proj.g_idx”, “model.layers.1.self_attn.q_proj.g_idx”, “model.layers.1.self_attn.v_proj.g_idx”, “model.layers.1.mlp.down_proj.g_idx”, “model.layers.1.mlp.gate_proj.g_idx”, “model.layers.1.mlp.up_proj.g_idx”, “model.layers.2.self_attn.k_proj.g_idx”, “model.layers.2.self_attn.o_proj.g_idx”, “model.layers.2.self_attn.q_proj.g_idx”, “model.layers.2.self_attn.v_proj.g_idx”, “model.layers.2.mlp.down_proj.g_idx”, “model.layers.2.mlp.gate_proj.g_idx”, “model.layers.2.mlp.up_proj.g_idx”, “model.layers.3.self_attn.k_proj.g_idx”, “model.layers.3.self_attn.o_proj.g_idx”, “model.layers.3.self_attn.q_proj.g_idx”, “model.layers.3.self_attn.v_proj.g_idx”, “model.layers.3.mlp.down_proj.g_idx”, “model.layers.3.mlp.gate_proj.g_idx”, “model.layers.3.mlp.up_proj.g_idx”, “model.layers.4.self_attn.k_proj.g_idx”, “model.layers.4.self_attn.o_proj.g_idx”, “model.layers.4.self_attn.q_proj.g_idx”, “model.layers.4.self_attn.v_proj.g_idx”, “model.layers.4.mlp.down_proj.g_idx”, “model.layers.4.mlp.gate_proj.g_idx”, “model.layers.4.mlp.up_proj.g_idx”, “model.layers.5.self_attn.k_proj.g_idx”, “model.layers.5.self_attn.o_proj.g_idx”, “model.layers.5.self_attn.q_proj.g_idx”, “model.layers.5.self_attn.v_proj.g_idx”, “model.layers.5.mlp.down_proj.g_idx”, “model.layers.5.mlp.gate_proj.g_idx”, “model.layers.5.mlp.up_proj.g_idx”, “model.layers.6.self_attn.k_proj.g_idx”, “model.layers.6.self_attn.o_proj.g_idx”, “model.layers.6.self_attn.q_proj.g_idx”, “model.layers.6.self_attn.v_proj.g_idx”, “model.layers.6.mlp.down_proj.g_idx”, “model.layers.6.mlp.gate_proj.g_idx”, “model.layers.6.mlp.up_proj.g_idx”, “model.layers.7.self_attn.k_proj.g_idx”, “model.layers.7.self_attn.o_proj.g_idx”, “model.layers.7.self_attn.q_proj.g_idx”, “model.layers.7.self_attn.v_proj.g_idx”, “model.layers.7.mlp.down_proj.g_idx”, “model.layers.7.mlp.gate_proj.g_idx”, “model.layers.7.mlp.up_proj.g_idx”, “model.layers.8.self_attn.k_proj.g_idx”, “model.layers.8.self_attn.o_proj.g_idx”, “model.layers.8.self_attn.q_proj.g_idx”, “model.layers.8.self_attn.v_proj.g_idx”, “model.layers.8.mlp.down_proj.g_idx”, “model.layers.8.mlp.gate_proj.g_idx”, “model.layers.8.mlp.up_proj.g_idx”, “model.layers.9.self_attn.k_proj.g_idx”, “model.layers.9.self_attn.o_proj.g_idx”, “model.layers.9.self_attn.q_proj.g_idx”, “model.layers.9.self_attn.v_proj.g_idx”, “model.layers.9.mlp.down_proj.g_idx”, “model.layers.9.mlp.gate_proj.g_idx”, “model.layers.9.mlp.up_proj.g_idx”, “model.layers.10.self_attn.k_proj.g_idx”, “model.layers.10.self_attn.o_proj.g_idx”, “model.layers.10.self_attn.q_proj.g_idx”, “model.layers.10.self_attn.v_proj.g_idx”, “model.layers.10.mlp.down_proj.g_idx”, “model.layers.10.mlp.gate_proj.g_idx”, “model.layers.10.mlp.up_proj.g_idx”, “model.layers.11.self_attn.k_proj.g_idx”, “model.layers.11.self_attn.o_proj.g_idx”, “model.layers.11.self_attn.q_proj.g_idx”, “model.layers.11.self_attn.v_proj.g_idx”, “model.layers.11.mlp.down_proj.g_idx”, “model.layers.11.mlp.gate_proj.g_idx”, “model.layers.11.mlp.up_proj.g_idx”, “model.layers.12.self_attn.k_proj.g_idx”, “model.layers.12.self_attn.o_proj.g_idx”, “model.layers.12.self_attn.q_proj.g_idx”, “model.layers.12.self_attn.v_proj.g_idx”, “model.layers.12.mlp.down_proj.g_idx”, “model.layers.12.mlp.gate_proj.g_idx”, “model.layers.12.mlp.up_proj.g_idx”, “model.layers.13.self_attn.k_proj.g_idx”, “model.layers.13.self_attn.o_proj.g_idx”, “model.layers.13.self_attn.q_proj.g_idx”, “model.layers.13.self_attn.v_proj.g_idx”, “model.layers.13.mlp.down_proj.g_idx”, “model.layers.13.mlp.gate_proj.g_idx”, “model.layers.13.mlp.up_proj.g_idx”, “model.layers.14.self_attn.k_proj.g_idx”, “model.layers.14.self_attn.o_proj.g_idx”, “model.layers.14.self_attn.q_proj.g_idx”, “model.layers.14.self_attn.v_proj.g_idx”, “model.layers.14.mlp.down_proj.g_idx”, “model.layers.14.mlp.gate_proj.g_idx”, “model.layers.14.mlp.up_proj.g_idx”, “model.layers.15.self_attn.k_proj.g_idx”, “model.layers.15.self_attn.o_proj.g_idx”, “model.layers.15.self_attn.q_proj.g_idx”, “model.layers.15.self_attn.v_proj.g_idx”, “model.layers.15.mlp.down_proj.g_idx”, “model.layers.15.mlp.gate_proj.g_idx”, “model.layers.15.mlp.up_proj.g_idx”, “model.layers.16.self_attn.k_proj.g_idx”, “model.layers.16.self_attn.o_proj.g_idx”, “model.layers.16.self_attn.q_proj.g_idx”, “model.layers.16.self_attn.v_proj.g_idx”, “model.layers.16.mlp.down_proj.g_idx”, “model.layers.16.mlp.gate_proj.g_idx”, “model.layers.16.mlp.up_proj.g_idx”, “model.layers.17.self_attn.k_proj.g_idx”, “model.layers.17.self_attn.o_proj.g_idx”, “model.layers.17.self_attn.q_proj.g_idx”, “model.layers.17.self_attn.v_proj.g_idx”, “model.layers.17.mlp.down_proj.g_idx”, “model.layers.17.mlp.gate_proj.g_idx”, “model.layers.17.mlp.up_proj.g_idx”, “model.layers.18.self_attn.k_proj.g_idx”, “model.layers.18.self_attn.o_proj.g_idx”, “model.layers.18.self_attn.q_proj.g_idx”, “model.layers.18.self_attn.v_proj.g_idx”, “model.layers.18.mlp.down_proj.g_idx”, “model.layers.18.mlp.gate_proj.g_idx”, “model.layers.18.mlp.up_proj.g_idx”, “model.layers.19.self_attn.k_proj.g_idx”, “model.layers.19.self_attn.o_proj.g_idx”, “model.layers.19.self_attn.q_proj.g_idx”, “model.layers.19.self_attn.v_proj.g_idx”, “model.layers.19.mlp.down_proj.g_idx”, “model.layers.19.mlp.gate_proj.g_idx”, “model.layers.19.mlp.up_proj.g_idx”, “model.layers.20.self_attn.k_proj.g_idx”, “model.layers.20.self_attn.o_proj.g_idx”, “model.layers.20.self_attn.q_proj.g_idx”, “model.layers.20.self_attn.v_proj.g_idx”, “model.layers.20.mlp.down_proj.g_idx”, “model.layers.20.mlp.gate_proj.g_idx”, “model.layers.20.mlp.up_proj.g_idx”, “model.layers.21.self_attn.k_proj.g_idx”, “model.layers.21.self_attn.o_proj.g_idx”, “model.layers.21.self_attn.q_proj.g_idx”, “model.layers.21.self_attn.v_proj.g_idx”, “model.layers.21.mlp.down_proj.g_idx”, “model.layers.21.mlp.gate_proj.g_idx”, “model.layers.21.mlp.up_proj.g_idx”, “model.layers.22.self_attn.k_proj.g_idx”, “model.layers.22.self_attn.o_proj.g_idx”, “model.layers.22.self_attn.q_proj.g_idx”, “model.layers.22.self_attn.v_proj.g_idx”, “model.layers.22.mlp.down_proj.g_idx”, “model.layers.22.mlp.gate_proj.g_idx”, “model.layers.22.mlp.up_proj.g_idx”, “model.layers.23.self_attn.k_proj.g_idx”, “model.layers.23.self_attn.o_proj.g_idx”, “model.layers.23.self_attn.q_proj.g_idx”, “model.layers.23.self_attn.v_proj.g_idx”, “model.layers.23.mlp.down_proj.g_idx”, “model.layers.23.mlp.gate_proj.g_idx”, “model.layers.23.mlp.up_proj.g_idx”, “model.layers.24.self_attn.k_proj.g_idx”, “model.layers.24.self_attn.o_proj.g_idx”, “model.layers.24.self_attn.q_proj.g_idx”, “model.layers.24.self_attn.v_proj.g_idx”, “model.layers.24.mlp.down_proj.g_idx”, “model.layers.24.mlp.gate_proj.g_idx”, “model.layers.24.mlp.up_proj.g_idx”, “model.layers.25.self_attn.k_proj.g_idx”, “model.layers.25.self_attn.o_proj.g_idx”, “model.layers.25.self_attn.q_proj.g_idx”, “model.layers.25.self_attn.v_proj.g_idx”, “model.layers.25.mlp.down_proj.g_idx”, “model.layers.25.mlp.gate_proj.g_idx”, “model.layers.25.mlp.up_proj.g_idx”, “model.layers.26.self_attn.k_proj.g_idx”, “model.layers.26.self_attn.o_proj.g_idx”, “model.layers.26.self_attn.q_proj.g_idx”, “model.layers.26.self_attn.v_proj.g_idx”, “model.layers.26.mlp.down_proj.g_idx”, “model.layers.26.mlp.gate_proj.g_idx”, “model.layers.26.mlp.up_proj.g_idx”, “model.layers.27.self_attn.k_proj.g_idx”, “model.layers.27.self_attn.o_proj.g_idx”, “model.layers.27.self_attn.q_proj.g_idx”, “model.layers.27.self_attn.v_proj.g_idx”, “model.layers.27.mlp.down_proj.g_idx”, “model.layers.27.mlp.gate_proj.g_idx”, “model.layers.27.mlp.up_proj.g_idx”, “model.layers.28.self_attn.k_proj.g_idx”, “model.layers.28.self_attn.o_proj.g_idx”, “model.layers.28.self_attn.q_proj.g_idx”, “model.layers.28.self_attn.v_proj.g_idx”, “model.layers.28.mlp.down_proj.g_idx”, “model.layers.28.mlp.gate_proj.g_idx”, “model.layers.28.mlp.up_proj.g_idx”, “model.layers.29.self_attn.k_proj.g_idx”, “model.layers.29.self_attn.o_proj.g_idx”, “model.layers.29.self_attn.q_proj.g_idx”, “model.layers.29.self_attn.v_proj.g_idx”, “model.layers.29.mlp.down_proj.g_idx”, “model.layers.29.mlp.gate_proj.g_idx”, “model.layers.29.mlp.up_proj.g_idx”, “model.layers.30.self_attn.k_proj.g_idx”, “model.layers.30.self_attn.o_proj.g_idx”, “model.layers.30.self_attn.q_proj.g_idx”, “model.layers.30.self_attn.v_proj.g_idx”, “model.layers.30.mlp.down_proj.g_idx”, “model.layers.30.mlp.gate_proj.g_idx”, “model.layers.30.mlp.up_proj.g_idx”, “model.layers.31.self_attn.k_proj.g_idx”, “model.layers.31.self_attn.o_proj.g_idx”, “model.layers.31.self_attn.q_proj.g_idx”, “model.layers.31.self_attn.v_proj.g_idx”, “model.layers.31.mlp.down_proj.g_idx”, “model.layers.31.mlp.gate_proj.g_idx”, “model.layers.31.mlp.up_proj.g_idx”, “model.layers.32.self_attn.k_proj.g_idx”, “model.layers.32.self_attn.o_proj.g_idx”, “model.layers.32.self_attn.q_proj.g_idx”, “model.layers.32.self_attn.v_proj.g_idx”, “model.layers.32.mlp.down_proj.g_idx”, “model.layers.32.mlp.gate_proj.g_idx”, “model.layers.32.mlp.up_proj.g_idx”, “model.layers.33.self_attn.k_proj.g_idx”, “model.layers.33.self_attn.o_proj.g_idx”, “model.layers.33.self_attn.q_proj.g_idx”, “model.layers.33.self_attn.v_proj.g_idx”, “model.layers.33.mlp.down_proj.g_idx”, “model.layers.33.mlp.gate_proj.g_idx”, “model.layers.33.mlp.up_proj.g_idx”, “model.layers.34.self_attn.k_proj.g_idx”, “model.layers.34.self_attn.o_proj.g_idx”, “model.layers.34.self_attn.q_proj.g_idx”, “model.layers.34.self_attn.v_proj.g_idx”, “model.layers.34.mlp.down_proj.g_idx”, “model.layers.34.mlp.gate_proj.g_idx”, “model.layers.34.mlp.up_proj.g_idx”, “model.layers.35.self_attn.k_proj.g_idx”, “model.layers.35.self_attn.o_proj.g_idx”, “model.layers.35.self_attn.q_proj.g_idx”, “model.layers.35.self_attn.v_proj.g_idx”, “model.layers.35.mlp.down_proj.g_idx”, “model.layers.35.mlp.gate_proj.g_idx”, “model.layers.35.mlp.up_proj.g_idx”, “model.layers.36.self_attn.k_proj.g_idx”, “model.layers.36.self_attn.o_proj.g_idx”, “model.layers.36.self_attn.q_proj.g_idx”, “model.layers.36.self_attn.v_proj.g_idx”, “model.layers.36.mlp.down_proj.g_idx”, “model.layers.36.mlp.gate_proj.g_idx”, “model.layers.36.mlp.up_proj.g_idx”, “model.layers.37.self_attn.k_proj.g_idx”, “model.layers.37.self_attn.o_proj.g_idx”, “model.layers.37.self_attn.q_proj.g_idx”, “model.layers.37.self_attn.v_proj.g_idx”, “model.layers.37.mlp.down_proj.g_idx”, “model.layers.37.mlp.gate_proj.g_idx”, “model.layers.37.mlp.up_proj.g_idx”, “model.layers.38.self_attn.k_proj.g_idx”, “model.layers.38.self_attn.o_proj.g_idx”, “model.layers.38.self_attn.q_proj.g_idx”, “model.layers.38.self_attn.v_proj.g_idx”, “model.layers.38.mlp.down_proj.g_idx”, “model.layers.38.mlp.gate_proj.g_idx”, “model.layers.38.mlp.up_proj.g_idx”, “model.layers.39.self_attn.k_proj.g_idx”, “model.layers.39.self_attn.o_proj.g_idx”, “model.layers.39.self_attn.q_proj.g_idx”, “model.layers.39.self_attn.v_proj.g_idx”, “model.layers.39.mlp.down_proj.g_idx”, “model.layers.39.mlp.gate_proj.g_idx”, “model.layers.39.mlp.up_proj.g_idx”.
Unexpected key(s) in state_dict: “model.layers.0.self_attn.k_proj.bias”, “model.layers.0.self_attn.o_proj.bias”, “model.layers.0.self_attn.q_proj.bias”, “model.layers.0.self_attn.v_proj.bias”, “model.layers.0.mlp.down_proj.bias”, “model.layers.0.mlp.gate_proj.bias”, “model.layers.0.mlp.up_proj.bias”, “model.layers.1.self_attn.k_proj.bias”, “model.layers.1.self_attn.o_proj.bias”, “model.layers.1.self_attn.q_proj.bias”, “model.layers.1.self_attn.v_proj.bias”, “model.layers.1.mlp.down_proj.bias”, “model.layers.1.mlp.gate_proj.bias”, “model.layers.1.mlp.up_proj.bias”, “model.layers.2.self_attn.k_proj.bias”, “model.layers.2.self_attn.o_proj.bias”, “model.layers.2.self_attn.q_proj.bias”, “model.layers.2.self_attn.v_proj.bias”, “model.layers.2.mlp.down_proj.bias”, “model.layers.2.mlp.gate_proj.bias”, “model.layers.2.mlp.up_proj.bias”, “model.layers.3.self_attn.k_proj.bias”, “model.layers.3.self_attn.o_proj.bias”, “model.layers.3.self_attn.q_proj.bias”, “model.layers.3.self_attn.v_proj.bias”, “model.layers.3.mlp.down_proj.bias”, “model.layers.3.mlp.gate_proj.bias”, “model.layers.3.mlp.up_proj.bias”, “model.layers.4.self_attn.k_proj.bias”, “model.layers.4.self_attn.o_proj.bias”, “model.layers.4.self_attn.q_proj.bias”, “model.layers.4.self_attn.v_proj.bias”, “model.layers.4.mlp.down_proj.bias”, “model.layers.4.mlp.gate_proj.bias”, “model.layers.4.mlp.up_proj.bias”, “model.layers.5.self_attn.k_proj.bias”, “model.layers.5.self_attn.o_proj.bias”, “model.layers.5.self_attn.q_proj.bias”, “model.layers.5.self_attn.v_proj.bias”, “model.layers.5.mlp.down_proj.bias”, “model.layers.5.mlp.gate_proj.bias”, “model.layers.5.mlp.up_proj.bias”, “model.layers.6.self_attn.k_proj.bias”, “model.layers.6.self_attn.o_proj.bias”, “model.layers.6.self_attn.q_proj.bias”, “model.layers.6.self_attn.v_proj.bias”, “model.layers.6.mlp.down_proj.bias”, “model.layers.6.mlp.gate_proj.bias”, “model.layers.6.mlp.up_proj.bias”, “model.layers.7.self_attn.k_proj.bias”, “model.layers.7.self_attn.o_proj.bias”, “model.layers.7.self_attn.q_proj.bias”, “model.layers.7.self_attn.v_proj.bias”, “model.layers.7.mlp.down_proj.bias”, “model.layers.7.mlp.gate_proj.bias”, “model.layers.7.mlp.up_proj.bias”, “model.layers.8.self_attn.k_proj.bias”, “model.layers.8.self_attn.o_proj.bias”, “model.layers.8.self_attn.q_proj.bias”, “model.layers.8.self_attn.v_proj.bias”, “model.layers.8.mlp.down_proj.bias”, “model.layers.8.mlp.gate_proj.bias”, “model.layers.8.mlp.up_proj.bias”, “model.layers.9.self_attn.k_proj.bias”, “model.layers.9.self_attn.o_proj.bias”, “model.layers.9.self_attn.q_proj.bias”, “model.layers.9.self_attn.v_proj.bias”, “model.layers.9.mlp.down_proj.bias”, “model.layers.9.mlp.gate_proj.bias”, “model.layers.9.mlp.up_proj.bias”, “model.layers.10.self_attn.k_proj.bias”, “model.layers.10.self_attn.o_proj.bias”, “model.layers.10.self_attn.q_proj.bias”, “model.layers.10.self_attn.v_proj.bias”, “model.layers.10.mlp.down_proj.bias”, “model.layers.10.mlp.gate_proj.bias”, “model.layers.10.mlp.up_proj.bias”, “model.layers.11.self_attn.k_proj.bias”, “model.layers.11.self_attn.o_proj.bias”, “model.layers.11.self_attn.q_proj.bias”, “model.layers.11.self_attn.v_proj.bias”, “model.layers.11.mlp.down_proj.bias”, “model.layers.11.mlp.gate_proj.bias”, “model.layers.11.mlp.up_proj.bias”, “model.layers.12.self_attn.k_proj.bias”, “model.layers.12.self_attn.o_proj.bias”, “model.layers.12.self_attn.q_proj.bias”, “model.layers.12.self_attn.v_proj.bias”, “model.layers.12.mlp.down_proj.bias”, “model.layers.12.mlp.gate_proj.bias”, “model.layers.12.mlp.up_proj.bias”, “model.layers.13.self_attn.k_proj.bias”, “model.layers.13.self_attn.o_proj.bias”, “model.layers.13.self_attn.q_proj.bias”, “model.layers.13.self_attn.v_proj.bias”, “model.layers.13.mlp.down_proj.bias”, “model.layers.13.mlp.gate_proj.bias”, “model.layers.13.mlp.up_proj.bias”, “model.layers.14.self_attn.k_proj.bias”, “model.layers.14.self_attn.o_proj.bias”, “model.layers.14.self_attn.q_proj.bias”, “model.layers.14.self_attn.v_proj.bias”, “model.layers.14.mlp.down_proj.bias”, “model.layers.14.mlp.gate_proj.bias”, “model.layers.14.mlp.up_proj.bias”, “model.layers.15.self_attn.k_proj.bias”, “model.layers.15.self_attn.o_proj.bias”, “model.layers.15.self_attn.q_proj.bias”, “model.layers.15.self_attn.v_proj.bias”, “model.layers.15.mlp.down_proj.bias”, “model.layers.15.mlp.gate_proj.bias”, “model.layers.15.mlp.up_proj.bias”, “model.layers.16.self_attn.k_proj.bias”, “model.layers.16.self_attn.o_proj.bias”, “model.layers.16.self_attn.q_proj.bias”, “model.layers.16.self_attn.v_proj.bias”, “model.layers.16.mlp.down_proj.bias”, “model.layers.16.mlp.gate_proj.bias”, “model.layers.16.mlp.up_proj.bias”, “model.layers.17.self_attn.k_proj.bias”, “model.layers.17.self_attn.o_proj.bias”, “model.layers.17.self_attn.q_proj.bias”, “model.layers.17.self_attn.v_proj.bias”, “model.layers.17.mlp.down_proj.bias”, “model.layers.17.mlp.gate_proj.bias”, “model.layers.17.mlp.up_proj.bias”, “model.layers.18.self_attn.k_proj.bias”, “model.layers.18.self_attn.o_proj.bias”, “model.layers.18.self_attn.q_proj.bias”, “model.layers.18.self_attn.v_proj.bias”, “model.layers.18.mlp.down_proj.bias”, “model.layers.18.mlp.gate_proj.bias”, “model.layers.18.mlp.up_proj.bias”, “model.layers.19.self_attn.k_proj.bias”, “model.layers.19.self_attn.o_proj.bias”, “model.layers.19.self_attn.q_proj.bias”, “model.layers.19.self_attn.v_proj.bias”, “model.layers.19.mlp.down_proj.bias”, “model.layers.19.mlp.gate_proj.bias”, “model.layers.19.mlp.up_proj.bias”, “model.layers.20.self_attn.k_proj.bias”, “model.layers.20.self_attn.o_proj.bias”, “model.layers.20.self_attn.q_proj.bias”, “model.layers.20.self_attn.v_proj.bias”, “model.layers.20.mlp.down_proj.bias”, “model.layers.20.mlp.gate_proj.bias”, “model.layers.20.mlp.up_proj.bias”, “model.layers.21.self_attn.k_proj.bias”, “model.layers.21.self_attn.o_proj.bias”, “model.layers.21.self_attn.q_proj.bias”, “model.layers.21.self_attn.v_proj.bias”, “model.layers.21.mlp.down_proj.bias”, “model.layers.21.mlp.gate_proj.bias”, “model.layers.21.mlp.up_proj.bias”, “model.layers.22.self_attn.k_proj.bias”, “model.layers.22.self_attn.o_proj.bias”, “model.layers.22.self_attn.q_proj.bias”, “model.layers.22.self_attn.v_proj.bias”, “model.layers.22.mlp.down_proj.bias”, “model.layers.22.mlp.gate_proj.bias”, “model.layers.22.mlp.up_proj.bias”, “model.layers.23.self_attn.k_proj.bias”, “model.layers.23.self_attn.o_proj.bias”, “model.layers.23.self_attn.q_proj.bias”, “model.layers.23.self_attn.v_proj.bias”, “model.layers.23.mlp.down_proj.bias”, “model.layers.23.mlp.gate_proj.bias”, “model.layers.23.mlp.up_proj.bias”, “model.layers.24.self_attn.k_proj.bias”, “model.layers.24.self_attn.o_proj.bias”, “model.layers.24.self_attn.q_proj.bias”, “model.layers.24.self_attn.v_proj.bias”, “model.layers.24.mlp.down_proj.bias”, “model.layers.24.mlp.gate_proj.bias”, “model.layers.24.mlp.up_proj.bias”, “model.layers.25.self_attn.k_proj.bias”, “model.layers.25.self_attn.o_proj.bias”, “model.layers.25.self_attn.q_proj.bias”, “model.layers.25.self_attn.v_proj.bias”, “model.layers.25.mlp.down_proj.bias”, “model.layers.25.mlp.gate_proj.bias”, “model.layers.25.mlp.up_proj.bias”, “model.layers.26.self_attn.k_proj.bias”, “model.layers.26.self_attn.o_proj.bias”, “model.layers.26.self_attn.q_proj.bias”, “model.layers.26.self_attn.v_proj.bias”, “model.layers.26.mlp.down_proj.bias”, “model.layers.26.mlp.gate_proj.bias”, “model.layers.26.mlp.up_proj.bias”, “model.layers.27.self_attn.k_proj.bias”, “model.layers.27.self_attn.o_proj.bias”, “model.layers.27.self_attn.q_proj.bias”, “model.layers.27.self_attn.v_proj.bias”, “model.layers.27.mlp.down_proj.bias”, “model.layers.27.mlp.gate_proj.bias”, “model.layers.27.mlp.up_proj.bias”, “model.layers.28.self_attn.k_proj.bias”, “model.layers.28.self_attn.o_proj.bias”, “model.layers.28.self_attn.q_proj.bias”, “model.layers.28.self_attn.v_proj.bias”, “model.layers.28.mlp.down_proj.bias”, “model.layers.28.mlp.gate_proj.bias”, “model.layers.28.mlp.up_proj.bias”, “model.layers.29.self_attn.k_proj.bias”, “model.layers.29.self_attn.o_proj.bias”, “model.layers.29.self_attn.q_proj.bias”, “model.layers.29.self_attn.v_proj.bias”, “model.layers.29.mlp.down_proj.bias”, “model.layers.29.mlp.gate_proj.bias”, “model.layers.29.mlp.up_proj.bias”, “model.layers.30.self_attn.k_proj.bias”, “model.layers.30.self_attn.o_proj.bias”, “model.layers.30.self_attn.q_proj.bias”, “model.layers.30.self_attn.v_proj.bias”, “model.layers.30.mlp.down_proj.bias”, “model.layers.30.mlp.gate_proj.bias”, “model.layers.30.mlp.up_proj.bias”, “model.layers.31.self_attn.k_proj.bias”, “model.layers.31.self_attn.o_proj.bias”, “model.layers.31.self_attn.q_proj.bias”, “model.layers.31.self_attn.v_proj.bias”, “model.layers.31.mlp.down_proj.bias”, “model.layers.31.mlp.gate_proj.bias”, “model.layers.31.mlp.up_proj.bias”, “model.layers.32.self_attn.k_proj.bias”, “model.layers.32.self_attn.o_proj.bias”, “model.layers.32.self_attn.q_proj.bias”, “model.layers.32.self_attn.v_proj.bias”, “model.layers.32.mlp.down_proj.bias”, “model.layers.32.mlp.gate_proj.bias”, “model.layers.32.mlp.up_proj.bias”, “model.layers.33.self_attn.k_proj.bias”, “model.layers.33.self_attn.o_proj.bias”, “model.layers.33.self_attn.q_proj.bias”, “model.layers.33.self_attn.v_proj.bias”, “model.layers.33.mlp.down_proj.bias”, “model.layers.33.mlp.gate_proj.bias”, “model.layers.33.mlp.up_proj.bias”, “model.layers.34.self_attn.k_proj.bias”, “model.layers.34.self_attn.o_proj.bias”, “model.layers.34.self_attn.q_proj.bias”, “model.layers.34.self_attn.v_proj.bias”, “model.layers.34.mlp.down_proj.bias”, “model.layers.34.mlp.gate_proj.bias”, “model.layers.34.mlp.up_proj.bias”, “model.layers.35.self_attn.k_proj.bias”, “model.layers.35.self_attn.o_proj.bias”, “model.layers.35.self_attn.q_proj.bias”, “model.layers.35.self_attn.v_proj.bias”, “model.layers.35.mlp.down_proj.bias”, “model.layers.35.mlp.gate_proj.bias”, “model.layers.35.mlp.up_proj.bias”, “model.layers.36.self_attn.k_proj.bias”, “model.layers.36.self_attn.o_proj.bias”, “model.layers.36.self_attn.q_proj.bias”, “model.layers.36.self_attn.v_proj.bias”, “model.layers.36.mlp.down_proj.bias”, “model.layers.36.mlp.gate_proj.bias”, “model.layers.36.mlp.up_proj.bias”, “model.layers.37.self_attn.k_proj.bias”, “model.layers.37.self_attn.o_proj.bias”, “model.layers.37.self_attn.q_proj.bias”, “model.layers.37.self_attn.v_proj.bias”, “model.layers.37.mlp.down_proj.bias”, “model.layers.37.mlp.gate_proj.bias”, “model.layers.37.mlp.up_proj.bias”, “model.layers.38.self_attn.k_proj.bias”, “model.layers.38.self_attn.o_proj.bias”, “model.layers.38.self_attn.q_proj.bias”, “model.layers.38.self_attn.v_proj.bias”, “model.layers.38.mlp.down_proj.bias”, “model.layers.38.mlp.gate_proj.bias”, “model.layers.38.mlp.up_proj.bias”, “model.layers.39.self_attn.k_proj.bias”, “model.layers.39.self_attn.o_proj.bias”, “model.layers.39.self_attn.q_proj.bias”, “model.layers.39.self_attn.v_proj.bias”, “model.layers.39.mlp.down_proj.bias”, “model.layers.39.mlp.gate_proj.bias”, “model.layers.39.mlp.up_proj.bias”.

When runnin on nvidia rtx 3060 12GB VRAM and 2CPU + 32GB RAM i get this errror. Why is trying to use CPU memory if GPU has 12GB VRAM?

INFO:Loading TheBloke_Wizard-Vicuna-13B-Uncensored-GPTQ...
INFO:Found the following quantized model: models\TheBloke_Wizard-Vicuna-13B-Uncensored-GPTQ\Wizard-Vicuna-13B-Uncensored-GPTQ-4bit-128g.compat.no-act-order.safetensors
Traceback (most recent call last):
File "C:\x\oobabooga_windows\text-generation-webui\server.py", line 1063, in
shared.model, shared.tokenizer = load_model(shared.model_name)
File "C:\x\oobabooga_windows\text-generation-webui\modules\models.py", line 95, in load_model
output = load_func(model_name)
File "C:\x\oobabooga_windows\text-generation-webui\modules\models.py", line 275, in GPTQ_loader
model = modules.GPTQ_loader.load_quantized(model_name)
File "C:\x\oobabooga_windows\text-generation-webui\modules\GPTQ_loader.py", line 177, in load_quantized
model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold)
File "C:\x\oobabooga_windows\text-generation-webui\modules\GPTQ_loader.py", line 52, in _load_quant
model = AutoModelForCausalLM.from_config(config, trust_remote_code=shared.args.trust_remote_code)
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\transformers\models\auto\auto_factory.py", line 414, in from_config
return model_class._from_config(config, **kwargs)
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\transformers\modeling_utils.py", line 1124, in _from_config
model = cls(config, **kwargs)
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\transformers\models\llama\modeling_llama.py", line 615, in init
self.model = LlamaModel(config)
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\transformers\models\llama\modeling_llama.py", line 446, in init
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\transformers\models\llama\modeling_llama.py", line 446, in
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\transformers\models\llama\modeling_llama.py", line 257, in init
self.mlp = LlamaMLP(
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\transformers\models\llama\modeling_llama.py", line 153, in init
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
File "C:\x\oobabooga_windows\installer_files\env\lib\site-packages\torch\nn\modules\linear.py", line 96, in init
self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
RuntimeError: [enforce fail at C:\cb\pytorch_1000000000000\work\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 141557760 bytes.

Done!

You need to increase your Windows pagefile size

Tutorial here: https://mcci.com/support/guides/how-to-change-the-windows-pagefile-size/

Not sure if that would be the case for you guys, but try changing the "Model loader" to "ExLlama". Worked perfectly fine for me, the default (AutoGPTQ) wasn't working for some reason, and was giving this exact same error.
Might be worth trying other loaders too if ExLlama doesn't work for you.

Sign up or log in to comment