TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Puma 3B - GPTQ

Description

This repo contains GPTQ model files for Bohan Du's Puma 3B.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

Repositories available

Prompt template: Human-Response

### HUMAN:
{prompt}

### RESPONSE:

Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

All GPTQ files are made with AutoGPTQ.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 128 No 0.1 wikitext 2048 2.09 GB Yes Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 wikitext 2048 2.28 GB Yes 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed.
gptq-4bit-64g-actorder_True 4 64 Yes 0.1 wikitext 2048 2.15 GB Yes 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-4bit-128g-actorder_True 4 128 Yes 0.1 wikitext 2048 2.09 GB Yes 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 wikitext 2048 3.64 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 wikitext 2048 3.71 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed.

How to download from branches

  • In text-generation-webui, you can add :branch to the end of the download name, eg TheBloke/Puma-3b-GPTQ:gptq-4bit-32g-actorder_True
  • With Git, you can clone a branch with:
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Puma-3b-GPTQ
  • In Python Transformers code, the branch is the revision parameter; see below.

How to easily download and use this model in text-generation-webui.

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/Puma-3b-GPTQ.
  • To download from a specific branch, enter for example TheBloke/Puma-3b-GPTQ:gptq-4bit-32g-actorder_True
  • see Provided Files above for the list of branches for each option.
  1. Click Download.
  2. The model will start downloading. Once it's finished it will say "Done"
  3. In the top left, click the refresh icon next to Model.
  4. In the Model dropdown, choose the model you just downloaded: Puma-3b-GPTQ
  5. The model will automatically load, and is now ready for use!
  6. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  • Note that you do not need to set GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started!

How to use this GPTQ model from Python code

First make sure you have AutoGPTQ 0.3.1 or later installed:

pip3 install auto-gptq

If you have problems installing AutoGPTQ, please build from source instead:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .

Then try the following example code:

from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_name_or_path = "TheBloke/Puma-3b-GPTQ"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

"""
# To download from a specific branch, use the revision parameter, as in this example:
# Note that `revision` requires AutoGPTQ 0.3.1 or later!

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        revision="gptq-4bit-32g-actorder_True",
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        quantize_config=None)
"""

prompt = "Tell me about AI"
prompt_template=f'''### HUMAN:
{prompt}

### RESPONSE:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.

ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Bohan Du's Puma 3B

This is OpenLLaMA 3B V2 finetuned on ShareGPT Hyperfiltered for 1 epochs.

Prompt template:

### HUMAN:
{prompt}

### RESPONSE:
<leave a newline for the model to answer>

q4_1 GGML quant available here.

Note: Don't expect this model to be good, I was just starting out to finetune. So don't roast me please!

Benchmarks:

arc_challenge
acc0.3660409556313993
acc_stderr0.014077223108470142
acc_norm0.4121160409556314
acc_norm_stderr0.014383915302225403
hellaswag
acc0.5401314479187412
acc_stderr0.004973683026202171
acc_norm0.7177853017327226
acc_norm_stderr0.004491574539441884
hendrycksTest-abstract_algebra
acc0.21
acc_stderr0.04093601807403326
acc_norm0.21
acc_norm_stderr0.04093601807403326
hendrycksTest-anatomy
acc0.25925925925925924
acc_stderr0.03785714465066653
acc_norm0.25925925925925924
acc_norm_stderr0.03785714465066653
hendrycksTest-astronomy
acc0.28289473684210525
acc_stderr0.03665349695640767
acc_norm0.28289473684210525
acc_norm_stderr0.03665349695640767
hendrycksTest-business_ethics
acc0.34
acc_stderr0.04760952285695236
acc_norm0.34
acc_norm_stderr0.04760952285695236
hendrycksTest-clinical_knowledge
acc0.2528301886792453
acc_stderr0.02674989977124123
acc_norm0.2528301886792453
acc_norm_stderr0.02674989977124123
hendrycksTest-college_biology
acc0.24305555555555555
acc_stderr0.03586879280080339
acc_norm0.24305555555555555
acc_norm_stderr0.03586879280080339
hendrycksTest-college_chemistry
acc0.19
acc_stderr0.03942772444036623
acc_norm0.19
acc_norm_stderr0.03942772444036623
hendrycksTest-college_computer_science
acc0.21
acc_stderr0.040936018074033256
acc_norm0.21
acc_norm_stderr0.040936018074033256
hendrycksTest-college_mathematics
acc0.36
acc_stderr0.04824181513244218
acc_norm0.36
acc_norm_stderr0.04824181513244218
hendrycksTest-college_medicine
acc0.20809248554913296
acc_stderr0.030952890217749877
acc_norm0.20809248554913296
acc_norm_stderr0.030952890217749877
hendrycksTest-college_physics
acc0.2647058823529412
acc_stderr0.04389869956808778
acc_norm0.2647058823529412
acc_norm_stderr0.04389869956808778
hendrycksTest-computer_security
acc0.33
acc_stderr0.047258156262526045
acc_norm0.33
acc_norm_stderr0.047258156262526045
hendrycksTest-conceptual_physics
acc0.33617021276595743
acc_stderr0.030881618520676942
acc_norm0.33617021276595743
acc_norm_stderr0.030881618520676942
hendrycksTest-econometrics
acc0.24561403508771928
acc_stderr0.04049339297748144
acc_norm0.24561403508771928
acc_norm_stderr0.04049339297748144
hendrycksTest-electrical_engineering
acc0.2689655172413793
acc_stderr0.03695183311650232
acc_norm0.2689655172413793
acc_norm_stderr0.03695183311650232
hendrycksTest-elementary_mathematics
acc0.2724867724867725
acc_stderr0.022930973071633366
acc_norm0.2724867724867725
acc_norm_stderr0.022930973071633366
hendrycksTest-formal_logic
acc0.21428571428571427
acc_stderr0.03670066451047181
acc_norm0.21428571428571427
acc_norm_stderr0.03670066451047181
hendrycksTest-global_facts
acc0.32
acc_stderr0.046882617226215034
acc_norm0.32
acc_norm_stderr0.046882617226215034
hendrycksTest-high_school_biology
acc0.24193548387096775
acc_stderr0.024362599693031093
acc_norm0.24193548387096775
acc_norm_stderr0.024362599693031093
hendrycksTest-high_school_chemistry
acc0.26108374384236455
acc_stderr0.030903796952114485
acc_norm0.26108374384236455
acc_norm_stderr0.030903796952114485
hendrycksTest-high_school_computer_science
acc0.27
acc_stderr0.04461960433384739
acc_norm0.27
acc_norm_stderr0.04461960433384739
hendrycksTest-high_school_european_history
acc0.30303030303030304
acc_stderr0.035886248000917075
acc_norm0.30303030303030304
acc_norm_stderr0.035886248000917075
hendrycksTest-high_school_geography
acc0.24242424242424243
acc_stderr0.030532892233932026
acc_norm0.24242424242424243
acc_norm_stderr0.030532892233932026
hendrycksTest-high_school_government_and_politics
acc0.24352331606217617
acc_stderr0.030975436386845426
acc_norm0.24352331606217617
acc_norm_stderr0.030975436386845426
hendrycksTest-high_school_macroeconomics
acc0.2564102564102564
acc_stderr0.022139081103971545
acc_norm0.2564102564102564
acc_norm_stderr0.022139081103971545
hendrycksTest-high_school_mathematics
acc0.2518518518518518
acc_stderr0.026466117538959905
acc_norm0.2518518518518518
acc_norm_stderr0.026466117538959905
hendrycksTest-high_school_microeconomics
acc0.24789915966386555
acc_stderr0.028047967224176892
acc_norm0.24789915966386555
acc_norm_stderr0.028047967224176892
hendrycksTest-high_school_physics
acc0.31125827814569534
acc_stderr0.037804458505267334
acc_norm0.31125827814569534
acc_norm_stderr0.037804458505267334
hendrycksTest-high_school_psychology
acc0.26422018348623855
acc_stderr0.01890416417151019
acc_norm0.26422018348623855
acc_norm_stderr0.01890416417151019
hendrycksTest-high_school_statistics
acc0.2175925925925926
acc_stderr0.028139689444859672
acc_norm0.2175925925925926
acc_norm_stderr0.028139689444859672
hendrycksTest-high_school_us_history
acc0.24019607843137256
acc_stderr0.02998373305591362
acc_norm0.24019607843137256
acc_norm_stderr0.02998373305591362
hendrycksTest-high_school_world_history
acc0.28270042194092826
acc_stderr0.029312814153955924
acc_norm0.28270042194092826
acc_norm_stderr0.029312814153955924
hendrycksTest-human_aging
acc0.3901345291479821
acc_stderr0.03273766725459156
acc_norm0.3901345291479821
acc_norm_stderr0.03273766725459156
hendrycksTest-human_sexuality
acc0.1984732824427481
acc_stderr0.03498149385462473
acc_norm0.1984732824427481
acc_norm_stderr0.03498149385462473
hendrycksTest-international_law
acc0.30578512396694213
acc_stderr0.04205953933884124
acc_norm0.30578512396694213
acc_norm_stderr0.04205953933884124
hendrycksTest-jurisprudence
acc0.24074074074074073
acc_stderr0.0413311944024384
acc_norm0.24074074074074073
acc_norm_stderr0.0413311944024384
hendrycksTest-logical_fallacies
acc0.22085889570552147
acc_stderr0.03259177392742177
acc_norm0.22085889570552147
acc_norm_stderr0.03259177392742177
hendrycksTest-machine_learning
acc0.24107142857142858
acc_stderr0.04059867246952685
acc_norm0.24107142857142858
acc_norm_stderr0.04059867246952685
hendrycksTest-management
acc0.2912621359223301
acc_stderr0.04498676320572922
acc_norm0.2912621359223301
acc_norm_stderr0.04498676320572922
hendrycksTest-marketing
acc0.28205128205128205
acc_stderr0.029480360549541194
acc_norm0.28205128205128205
acc_norm_stderr0.029480360549541194
hendrycksTest-medical_genetics
acc0.31
acc_stderr0.04648231987117316
acc_norm0.31
acc_norm_stderr0.04648231987117316
hendrycksTest-miscellaneous
acc0.30140485312899107
acc_stderr0.016409091097268787
acc_norm0.30140485312899107
acc_norm_stderr0.016409091097268787
hendrycksTest-moral_disputes
acc0.30346820809248554
acc_stderr0.024752411960917202
acc_norm0.30346820809248554
acc_norm_stderr0.024752411960917202
hendrycksTest-moral_scenarios
acc0.24692737430167597
acc_stderr0.014422292204808835
acc_norm0.24692737430167597
acc_norm_stderr0.014422292204808835
hendrycksTest-nutrition
acc0.28431372549019607
acc_stderr0.025829163272757475
acc_norm0.28431372549019607
acc_norm_stderr0.025829163272757475
hendrycksTest-philosophy
acc0.29260450160771706
acc_stderr0.02583989833487798
acc_norm0.29260450160771706
acc_norm_stderr0.02583989833487798
hendrycksTest-prehistory
acc0.2993827160493827
acc_stderr0.02548311560119547
acc_norm0.2993827160493827
acc_norm_stderr0.02548311560119547
hendrycksTest-professional_accounting
acc0.2624113475177305
acc_stderr0.02624492034984301
acc_norm0.2624113475177305
acc_norm_stderr0.02624492034984301
hendrycksTest-professional_law
acc0.24641460234680573
acc_stderr0.011005971399927242
acc_norm0.24641460234680573
acc_norm_stderr0.011005971399927242
hendrycksTest-professional_medicine
acc0.21691176470588236
acc_stderr0.02503584522771125
acc_norm0.21691176470588236
acc_norm_stderr0.02503584522771125
hendrycksTest-professional_psychology
acc0.27941176470588236
acc_stderr0.018152871051538812
acc_norm0.27941176470588236
acc_norm_stderr0.018152871051538812
hendrycksTest-public_relations
acc0.2636363636363636
acc_stderr0.04220224692971987
acc_norm0.2636363636363636
acc_norm_stderr0.04220224692971987
hendrycksTest-security_studies
acc0.37551020408163266
acc_stderr0.031001209039894836
acc_norm0.37551020408163266
acc_norm_stderr0.031001209039894836
hendrycksTest-sociology
acc0.26865671641791045
acc_stderr0.03134328358208954
acc_norm0.26865671641791045
acc_norm_stderr0.03134328358208954
hendrycksTest-us_foreign_policy
acc0.35
acc_stderr0.0479372485441102
acc_norm0.35
acc_norm_stderr0.0479372485441102
hendrycksTest-virology
acc0.3253012048192771
acc_stderr0.03647168523683227
acc_norm0.3253012048192771
acc_norm_stderr0.03647168523683227
hendrycksTest-world_religions
acc0.30409356725146197
acc_stderr0.035282112582452334
acc_norm0.30409356725146197
acc_norm_stderr0.035282112582452334
truthfulqa_mc
mc10.2460220318237454
mc1_stderr0.015077219200662597
mc20.3821583918021301
mc2_stderr0.013892826466923648

Downloads last month
20
Safetensors
Model size
638M params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train TheBloke/Puma-3b-GPTQ