TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


NexusRaven V2 13B - AWQ

Description

This repo contains AWQ model files for Nexusflow's NexusRaven V2 13B.

These files were quantised using hardware kindly provided by Massed Compute.

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

Repositories available

Prompt template: NexusRaven

Function:
def function_here(arg1):
  """
    Comments explaining the function here

    Args:
    list args

    Returns:
    list returns
    """

Function:
def another_function_here(arg1):
  ...

User Query: {prompt}<human_end>

Licensing

The creator of the source model has listed its license as other, and this quantization has therefore used that same license.

As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.

In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: Nexusflow's NexusRaven V2 13B.

Provided files, and AWQ parameters

I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.

Models are released as sharded safetensors files.

Branch Bits GS AWQ Dataset Seq Len Size
main 4 128 Evol Instruct Code 4096 7.25 GB

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/NexusRaven-V2-13B-AWQ.
  3. Click Download.
  4. The model will start downloading. Once it's finished it will say "Done".
  5. In the top left, click the refresh icon next to Model.
  6. In the Model dropdown, choose the model you just downloaded: NexusRaven-V2-13B-AWQ
  7. Select Loader: AutoAWQ.
  8. Click Load, and the model will load and is now ready for use.
  9. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  10. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Multi-user inference server: vLLM

Documentation on installing and using vLLM can be found here.

  • Please ensure you are using vLLM version 0.2 or later.
  • When using vLLM as a server, pass the --quantization awq parameter.

For example:

python3 -m vllm.entrypoints.api_server --model TheBloke/NexusRaven-V2-13B-AWQ --quantization awq --dtype auto
  • When using vLLM from Python code, again set quantization=awq.

For example:

from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''Function:
def function_here(arg1):
  """
    Comments explaining the function here

    Args:
    list args

    Returns:
    list returns
    """

Function:
def another_function_here(arg1):
  ...

User Query: {prompt}<human_end>
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/NexusRaven-V2-13B-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/NexusRaven-V2-13B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''Function:
def function_here(arg1):
  """
    Comments explaining the function here

    Args:
    list args

    Returns:
    list returns
    """

Function:
def another_function_here(arg1):
  ...

User Query: {prompt}<human_end>
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)

Inference from Python code using Transformers

Install the necessary packages

pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"

Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.

If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:

pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl

If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .

Transformers example code (requires Transformers 4.35.0 and later)

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

model_name_or_path = "TheBloke/NexusRaven-V2-13B-AWQ"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    low_cpu_mem_usage=True,
    device_map="cuda:0"
)

# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "Tell me about AI"
prompt_template=f'''Function:
def function_here(arg1):
  """
    Comments explaining the function here

    Args:
    list args

    Returns:
    list returns
    """

Function:
def another_function_here(arg1):
  ...

User Query: {prompt}<human_end>
'''

# Convert prompt to tokens
tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

generation_params = {
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.95,
    "top_k": 40,
    "max_new_tokens": 512,
    "repetition_penalty": 1.1
}

# Generate streamed output, visible one token at a time
generation_output = model.generate(
    tokens,
    streamer=streamer,
    **generation_params
)

# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
    tokens,
    **generation_params
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)

# Inference is also possible via Transformers' pipeline
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    **generation_params
)

pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)

Compatibility

The files provided are tested to work with:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Nexusflow's NexusRaven V2 13B

NexusRaven-13B: Surpassing GPT-4 for Zero-shot Function Calling

Nexusflow HF - Nexusflow Discord - NexusRaven-V2 blog post - Prompting Notebook CoLab - Leaderboard - Read-World Demo - NexusRaven-V2-13B Github

NexusRaven

Introducing NexusRaven-V2-13B

NexusRaven is an open-source and commercially viable function calling LLM that surpasses the state-of-the-art in function calling capabilities.

💪 Versatile Function Calling Capability: NexusRaven-V2 is capable of generating single function calls, nested calls, and parallel calls in many challenging cases.

🤓 Fully Explainable: NexusRaven-V2 is capable of generating very detailed explanations for the function calls it generates. This behavior can be turned off, to save tokens during inference.

📊 Performance Highlights: NexusRaven-V2 surpasses GPT-4 by 7% in function calling success rates in human-generated use cases involving nested and composite functions.

🔧 Generalization to the Unseen: NexusRaven-V2 has never been trained on the functions used in evaluation.

🔥 Commercially Permissive: The training of NexusRaven-V2 does not involve any data generated by proprietary LLMs such as GPT-4. You have full control of the model when deployed in commercial applications.

Please checkout the following links!

NexusRaven-V2 model usage

NexusRaven-V2 accepts a list of python functions. These python functions can do anything (including sending GET/POST requests to external APIs!). The two requirements include the python function signature and the appropriate docstring to generate the function call.

NexusRaven-V2's Capabilities

NexusRaven-V2 is capable of generating deeply nested function calls, parallel function calls, and simple single calls. It can also justify the function calls it generated. If you would like to generate the call only, please set a stop criteria of "<bot_end>". Otherwise, please allow NexusRaven-V2 to run until its stop token (i.e. "</s>").

Quick Start Prompting Guide

Please refer to our notebook, How-To-Prompt.ipynb, for more advanced tutorials on using NexusRaven-V2!

  1. We strongly recommend to set sampling to False when prompting NexusRaven-V2.
  2. We strongly recommend a very low temperature (~0.001).
  3. We strongly recommend following the prompting style below.

Quickstart

You can run the model on a GPU using the following code.

# Please `pip install transformers accelerate`
from transformers import pipeline


pipeline = pipeline(
    "text-generation",
    model="Nexusflow/NexusRaven-V2-13B",
    torch_dtype="auto",
    device_map="auto",
)

prompt_template = \
'''
Function:
def get_weather_data(coordinates):
    """
    Fetches weather data from the Open-Meteo API for the given latitude and longitude.

    Args:
    coordinates (tuple): The latitude of the location.

    Returns:
    float: The current temperature in the coordinates you've asked for
    """

Function:
def get_coordinates_from_city(city_name):
    """
    Fetches the latitude and longitude of a given city name using the Maps.co Geocoding API.

    Args:
    city_name (str): The name of the city.

    Returns:
    tuple: The latitude and longitude of the city.
    """

User Query: {query}<human_end>

'''

prompt = prompt_template.format(query="What's the weather like in Seattle right now?")

result = pipeline(prompt, max_new_tokens=2048, return_full_text=False, do_sample=False, temperature=0.001)[0]["generated_text"]
print (result)

This should generate the following:

Call: get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))<bot_end>
Thought: The function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by following these steps:

1. `get_coordinates_from_city(city_name='Seattle')`: This function call fetches the latitude and longitude of the city "Seattle" using the Maps.co Geocoding API.
2. `get_weather_data(coordinates=...)`: This function call fetches the current weather data for the coordinates returned by the previous function call.

Therefore, the function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by first fetching the coordinates of the city "Seattle" and then fetching the current weather data for those coordinates.

If you would like to prevent the generation of the explanation of the function call (for example, to save on inference tokens), please set a stopping criteria of <bot_end>.

Please follow this prompting template to maximize the performance of RavenV2.

Using with OpenAI FC Schematics

If you currently have a workflow that is built around OpenAI's function calling and you want to try NexusRaven-V2, we have a package that helps you drop in NexusRaven-V2.

Evaluation

NexusRaven NexusRaven

For a deeper dive into the results, please see our Github README.

Limitations

  1. The model works best when it is connected with a retriever when there are a multitude of functions, as a large number of functions will saturate the context window of this model.
  2. The model can be prone to generate incorrect calls. Please ensure proper guardrails to capture errant behavior is in place.
  3. The explanations generated by NexusRaven-V2 might be incorrect. Please ensure proper guardrails are present to capture errant behavior.

License

This model was trained on commercially viable data and is licensed under the Nexusflow community license.

References

We thank the CodeLlama team for their amazing models!

@misc{rozière2023code,
      title={Code Llama: Open Foundation Models for Code}, 
      author={Baptiste Rozière and Jonas Gehring and Fabian Gloeckle and Sten Sootla and Itai Gat and Xiaoqing Ellen Tan and Yossi Adi and Jingyu Liu and Tal Remez and Jérémy Rapin and Artyom Kozhevnikov and Ivan Evtimov and Joanna Bitton and Manish Bhatt and Cristian Canton Ferrer and Aaron Grattafiori and Wenhan Xiong and Alexandre Défossez and Jade Copet and Faisal Azhar and Hugo Touvron and Louis Martin and Nicolas Usunier and Thomas Scialom and Gabriel Synnaeve},
      year={2023},
      eprint={2308.12950},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Citation

@misc{nexusraven,
      title={NexusRaven-V2: Surpassing GPT-4 for Zero-shot Function Calling},
      author={Nexusflow.ai team},
      year={2023},
      url={https://nexusflow.ai/blogs/ravenv2}
}

Contact

Please join our Discord Channel to reach out for any issues and comments!

Downloads last month
18
Safetensors
Model size
2.03B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/NexusRaven-V2-13B-AWQ

Quantized
(9)
this model