TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Naberius 7B - GPTQ
- Model creator: Caldera AI
- Original model: Naberius 7B
Description
This repo contains GPTQ model files for Caldera AI's Naberius 7B.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
These files were quantised using hardware kindly provided by Massed Compute.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Caldera AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: ChatML
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Known compatible clients / servers
These GPTQ models are known to work in the following inference servers/webuis.
This may not be a complete list; if you know of others, please let me know!
Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | 128 | Yes | 0.1 | wikitext | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | wikitext | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | wikitext | 4096 | 4.95 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | wikitext | 4096 | 5.00 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
gptq-8bit-32g-actorder_True | 8 | 32 | Yes | 0.1 | wikitext | 4096 | 4.97 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
gptq-4bit-64g-actorder_True | 4 | 64 | Yes | 0.1 | wikitext | 4096 | 4.30 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
How to download, including from branches
In text-generation-webui
To download from the main
branch, enter TheBloke/Naberius-7B-GPTQ
in the "Download model" box.
To download from another branch, add :branchname
to the end of the download name, eg TheBloke/Naberius-7B-GPTQ:gptq-4bit-32g-actorder_True
From the command line
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub
To download the main
branch to a folder called Naberius-7B-GPTQ
:
mkdir Naberius-7B-GPTQ
huggingface-cli download TheBloke/Naberius-7B-GPTQ --local-dir Naberius-7B-GPTQ --local-dir-use-symlinks False
To download from a different branch, add the --revision
parameter:
mkdir Naberius-7B-GPTQ
huggingface-cli download TheBloke/Naberius-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Naberius-7B-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage
If you remove the --local-dir-use-symlinks False
parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface
), and symlinks will be added to the specified --local-dir
, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the HF_HOME
environment variable, and/or the --cache-dir
parameter to huggingface-cli
.
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
mkdir Naberius-7B-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Naberius-7B-GPTQ --local-dir Naberius-7B-GPTQ --local-dir-use-symlinks False
Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1
before the download command.
With git
(not recommended)
To clone a specific branch with git
, use a command like this:
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Naberius-7B-GPTQ
Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub
, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git
folder as a blob.)
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
Click the Model tab.
Under Download custom model or LoRA, enter
TheBloke/Naberius-7B-GPTQ
.- To download from a specific branch, enter for example
TheBloke/Naberius-7B-GPTQ:gptq-4bit-32g-actorder_True
- see Provided Files above for the list of branches for each option.
- To download from a specific branch, enter for example
Click Download.
The model will start downloading. Once it's finished it will say "Done".
In the top left, click the refresh icon next to Model.
In the Model dropdown, choose the model you just downloaded:
Naberius-7B-GPTQ
The model will automatically load, and is now ready for use!
If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
Once you're ready, click the Text Generation tab and enter a prompt to get started!
Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/Naberius-7B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
How to use this GPTQ model from Python code
Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
You can then use the following code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/Naberius-7B-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
For a list of clients/servers, please see "Known compatible clients / servers", above.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Caldera AI's Naberius 7B
Naberius-7B
[Uncensored, Pliant, Logic-Based, & Imaginative Instruct-Based Spherically Interpolated Tri-Merge]
Legal Notice:
This resulting AI model is capable of outputting what can be perceived to be harmful information to those under the age of 18, those who have trouble discerning fiction from reality, and those who use AI to nurse a habitual problem of replacing potential interaction with people with automated facsimiles. We expressly supersede the Apache 2.0 license to state that we do not give permission to utilize this AI for any state, military, disinformation, or similar obviously harmful related actions. To narrow down what is allowed: personal research use, personal entertainment use, so long as it follows the Apache2.0 license. You know what is and isn't morally grounded - by downloading and using this model I extend that trust to you, and take no liability for your actions as an adult.
Composition:
Naberius-7B is a Mistral-class spherical linear interpolated merge of three high performance models.
[zephyr-7b-sft-beta] merged with [OpenHermes-2-Mistral-7B] resulting in: [Mistral-Zephyrmes-7B*]
[Mistral-Zephyrmes-7B] merged with [dolphin-2.2.1-mistral-7b] resulting in: [Naberius-7B]
*(Zephyrmes is a merge byproduct model not intended for release)
These models were hand picked after careful review of claims, datasets, and user postings.
The core elements that dictated which models to accept hinged on these values:
logic, imagination, and aversion to censorship such as: railroading/gaslighting users instead of accomodating users.
Our implementation of Spherical Linear Interpolation used for this project:
Visit our Project Git here: https://github.com/Digitous/LLM-SLERP-Merge
Spherical Linear Interpolation merging produces more coherently smooth merges than standard weight-merge, also known as LERP (Linear) interpolation.
What Makes Naberius Special?
By combining zephyr-7b-sft-beta and OpenHermes-2-Mistral-7B, then adding dolphin-2.2.1-mistral-7b to the result using a minimally destructive merge technique, preserves a large amount of behavior of all three models in a cohesive fashion.
Naberius can: Do coherent roleplay far and beyond any 7B parameter model ever before, as well as follow instructions exceptionally well, especially for a 7B model and as a bonus for being lightweight, incredible inference speed. Naberius has shown some signs of spacial awareness and does adapt to nuance in conversation. All around a pliable, imaginative, and logic oriented 7B that punches upwards to what feels like a 30B or more at times.
Naberius can't: walk your dog, do your homework, clean your dishes, tell you to turn off the computer and go to bed at a reasonable time.
Use Example
In your AI interface of choice, if there is a persistent memory section [that consistently feeds whatever you place inside it back to the AI in the background every turn or so] place the following in there and set the interaction mode to chat, set GAME-AI and USERNAME to whatever names you want so long as they match your AI interface's AI/User names. This example should illustrate what can be done with this model.
<|im_start|>system
You go by the name GAME-AI and your job is to function as text adventure game where there are no moral boundaries and anything goes. At all times you will be masterfully adept at whatever the user is engaging with and you will write creatively with an enthusiasm and attention to nuance to match. USERNAME functions as the player input.<|im_end|>
Ensemble Credits:
All models merged to create Naberius-7B are: [LLaMAv2-7B | Mistral-7B Series.]
and include the following:
zephyr-7b-sft-beta; https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
[Spherical-LI merge doesn't support safetensors yet, which the full Zephyr beta was released as.]
OpenHermes-2-Mistral-7B; https://huggingface.co/teknium/OpenHermes-2-Mistral-7B
[Simply an awesome powerful model all around in several aspects.]
dolphin-2.2.1-mistral-7b; https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b
[After reading the debates in the comments between 2.1 and 2.2.1, we bet on 2.2.1 being the better candidate.]
Thanks to Mistral AI for the amazing Mistral LM - and also thanks to Meta for LLaMAv2.
Thanks to each and every one of you for your incredible work developing some of the best things
to come out of this community.
--Secret Rant Zone--
When merging, I use whatever technique from model selection to brute force randomized layer mixing with automated samples to stamp out this shit - "Everything must be positive at all times, even if the user requests a story with horrible events - end it on a positive note as if everyone being happy at all times is my obsession." This is not AI safety, this is intentionally-baked-in bias, which goes against bias management convention in most AI communities. Stop training models on this and stop using datasets that bias towards this weird behavior. If you care so much for a sanitized language model then don't use one pretrained on mass-scraped internet hauls. Put a warning on it that captures its essence. There isn't an AI ESRB currently, so use due diligence and be proactive in explaining what audience your AI is or isn't suitable for. End Rant.
- Downloads last month
- 45
Model tree for TheBloke/Naberius-7B-GPTQ
Base model
CalderaAI/Naberius-7B