Can I use this model for my own purposes with the hardware?
Can I use this model for my own purposes if my Core i7-6700 computer has 16 GB RAM and integrated video. Maybe I'm not making the right settings or I don't have the right hardware, so I get the error "RuntimeError: [enforce failed at ..\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 67108864 bytes."
Can you tell me if this model or another one will work for me to generate text by promts?
my main.py:
import torch
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
model_name_or_path = "GPT/LLongMA-2-7B-GPTQ"
model_basename = "gptq_model-4bit-32g"
use_triton = False
device = "cuda:0" if torch.cuda.is_available() else "cpu" # use CPU if CUDA is not available
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
device=device,
use_triton=False,
use_safetensors=True,
torch_dtype=torch.float32,
trust_remote_code=True)
prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))
Inference can also be done using transformers' pipeline
Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
I don't think an integrated GPU is going to provide enough VRAM
I suggest to try the GGML models instead.