TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
CodeUp Llama 2 13B Chat HF - AWQ
- Model creator: DeepSE
- Original model: CodeUp Llama 2 13B Chat HF
Description
This repo contains AWQ model files for DeepSE's CodeUp Llama 2 13B Chat HF.
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
It is also now supported by continuous batching server vLLM, allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- DeepSE's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Alpaca
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
Licensing
The creator of the source model has listed its license as openrail++
, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: DeepSE's CodeUp Llama 2 13B Chat HF.
Provided files and AWQ parameters
For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
Models are released as sharded safetensors files.
Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
---|---|---|---|---|---|
main | 4 | 128 | Evol Instruct Code | 4096 | 7.25 GB |
Serving this model from vLLM
Documentation on installing and using vLLM can be found here.
- When using vLLM as a server, pass the
--quantization awq
parameter, for example:
python3 python -m vllm.entrypoints.api_server --model TheBloke/CodeUp-Llama-2-13B-Chat-HF-AWQ --quantization awq
When using vLLM from Python code, pass the quantization=awq
parameter, for example:
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="TheBloke/CodeUp-Llama-2-13B-Chat-HF-AWQ", quantization="awq")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
How to use this AWQ model from Python code
Install the necessary packages
Requires: AutoAWQ 0.0.2 or later
pip3 install autoawq
If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
You can then try the following example code
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_name_or_path = "TheBloke/CodeUp-Llama-2-13B-Chat-HF-AWQ"
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
'''
print("\n\n*** Generate:")
tokens = tokenizer(
prompt_template,
return_tensors='pt'
).input_ids.cuda()
# Generate output
generation_output = model.generate(
tokens,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
max_new_tokens=512
)
print("Output: ", tokenizer.decode(generation_output[0]))
# Inference can also be done using transformers' pipeline
from transformers import pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with AutoAWQ, and vLLM.
Huggingface Text Generation Inference (TGI) is not yet compatible with AWQ, but a PR is open which should bring support soon: TGI PR #781.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: DeepSE's CodeUp Llama 2 13B Chat HF
CodeUp: A Multilingual Code Generation Llama2 Model with Parameter-Efficient Instruction-Tuning on a Single RTX 3090
Description
In recent years, large language models (LLMs) have shown exceptional capabilities in a wide range of applications due to their fantastic emergence ability. To align with human preference, instruction-tuning and reinforcement learning from human feedback (RLHF) are proposed for Chat-based LLMs (e.g., ChatGPT, GPT-4). However, these LLMs (except for Codex) primarily focus on the general domain and are not specifically designed for the code domain. Although Codex provides an alternative choice, it is a closed-source model developed by OpenAI. Hence, it is imperative to develop open-source instruction-following LLMs for the code domain. However, the large-scale number of LLMs' parameters ($\ge$7B) and training datasets require a vast amount of computational resources, which significantly impedes the development of training and inference on consumer hardware.
To handle these challenges, in this project, we adopt the latest powerful foundation model Llama 2
and construct high-quality instruction-following data for code generation tasks, and propose an instruction-following multilingual code generation Llama2 model. Meanwhile, to make it fit an academic budget and consumer hardware (e.g., a single RTX 3090) based on Alpaca-LoRA
, we equip CodeUp
with the advanced parameter-efficient fine-tuning (PEFT) methods (e.g., LoRA) which enable efficient adaptation of pre-trained language models (PLMs, also known as foundation model) to various downstream applications without fine-tuning the entire model's parameters. The overall training recipe is as follows.
NL2Code Data Release
Recently, it has attracted significant attention to exploiting much larger and more powerful LLMs (e.g., ChatGPT, GPT-4) to self-generate instruction-following data by delicate prompt design. However, many approaches primarily focus on the general domain and lack code-specific domain considerations. To this end, Code Alpaca follows the previous Self-Instruct paper [3] and Stanford Alpaca repo with some code-related modifications to conduct 20K instruction-following data data/code_alpaca_20k.json
for code generation tasks. This JSON
file following alpaca_data.json
format is a list of dictionaries; each dictionary contains the following fields:
instruction
:str
, describes the task the model should perform. Each of the 20K instructions is unique.input
:str
, optional context or input for the task. For example, when the instruction is "Amend the following SQL query to select distinct elements", the input is the SQL query. Around 40% of the examples have an input.output
:str
, the answer to the instruction as generated bytext-davinci-003
.
High-quality Data Filter
However, after carefully checking the LLMs-self-generated data, we observe three critical problems that may hinder LLMs' instruction learning due to ambiguous and irrelevant noise. That is
- When
instruction
doesn't specify the programming language (PL) of implementation, theoutput
appears with diverse options, e.g., Python, C++, and JavaScript. - It is ambiguous to identify which programming language
output
is implemented by. - Both
instruction
andoutput
are irrelevant to the code-specific domain.
Hence, we filter the ambiguous and irrelevant data by rigorous design to obtain high-quality instruction data. Specifically, to solve 1) we set Python as the default PL of implementation and use Guesslang package to detect the PL of a given source code in output
. If the Python is detected, this prompt is retained. Otherwise, it will be filtered. 2) and 3) In these cases, we delete these prompts. After that, about 5K low-quality instruction data is filtered. To supplement the high-quality instruction data, we further integrate the data/new_codealpaca.json
data (about 4.5K) under the above filter rules.
This way, we gain the 19K high-quality instruction data of code generation. The following is the instruction number distribution of each PL with Radar visualization before and after filtering.
Training & Inference
Detailed instructions can be found at https://github.com/juyongjiang/CodeUp.
- Downloads last month
- 28
Model tree for TheBloke/CodeUp-Llama-2-13B-Chat-HF-AWQ
Base model
juyongjiang/CodeUp-Llama-2-13b-chat-hf