videomae-small-finetuned-kinetics-finetuned-SNchunks-5c-a40

This model is a fine-tuned version of MCG-NJU/videomae-small-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7599
  • Accuracy: 0.7159
  • Balanced Accuracy: 0.7157
  • Matthews Correlation: 0.6515
  • Confusion Matrix: [[1135 54 69 73 41] [ 333 828 92 50 68] [ 161 23 1008 165 13] [ 306 34 292 705 27] [ 102 17 16 9 1226]]
  • 0 Ball out of play: {'precision': 0.5571919489445263, 'recall': 0.827259475218659, 'f1-score': 0.665884423584629, 'support': 1372.0}
  • Precision 0: 0.5572
  • Recall 0: 0.8273
  • F1-score 0: 0.6659
  • Support 0: 1372.0
  • 1 Foul: {'precision': 0.8661087866108786, 'recall': 0.6039387308533917, 'f1-score': 0.7116458960034379, 'support': 1371.0}
  • Precision 1: 0.8661
  • Recall 1: 0.6039
  • F1-score 1: 0.7116
  • Support 1: 1371.0
  • 2 Goal: {'precision': 0.6824644549763034, 'recall': 0.7357664233576642, 'f1-score': 0.7081138040042149, 'support': 1370.0}
  • Precision 2: 0.6825
  • Recall 2: 0.7358
  • F1-score 2: 0.7081
  • Support 2: 1370.0
  • 3 Shots: {'precision': 0.7035928143712575, 'recall': 0.5168621700879765, 'f1-score': 0.5959425190194421, 'support': 1364.0}
  • Precision 3: 0.7036
  • Recall 3: 0.5169
  • F1-score 3: 0.5959
  • Support 3: 1364.0
  • 4 Throw-in: {'precision': 0.8916363636363637, 'recall': 0.8948905109489051, 'f1-score': 0.8932604735883425, 'support': 1370.0}
  • Precision 4: 0.8916
  • Recall 4: 0.8949
  • F1-score 4: 0.8933
  • Support 4: 1370.0
  • Precision Macro avg: 0.7402
  • Recall Macro avg: 0.7157
  • F1-score Macro avg: 0.7150
  • Support Macro avg: 6847.0
  • Precision Weighted avg: 0.7402
  • Recall Weighted avg: 0.7159
  • F1-score Weighted avg: 0.7151
  • Support Weighted avg: 6847.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Balanced Accuracy Matthews Correlation Confusion Matrix 0 Ball out of play Precision 0 Recall 0 F1-score 0 Support 0 1 Foul Precision 1 Recall 1 F1-score 1 Support 1 2 Goal Precision 2 Recall 2 F1-score 2 Support 2 3 Shots Precision 3 Recall 3 F1-score 3 Support 3 4 Throw-in Precision 4 Recall 4 F1-score 4 Support 4 Precision Macro avg Recall Macro avg F1-score Macro avg Support Macro avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support Weighted avg
0.7825 1.0 428 0.9234 0.6207 0.6205 0.5371 [[ 961 43 100 80 188]
[ 461 597 105 35 173]
[ 195 22 953 167 33]
[ 454 33 354 464 59]
[ 65 7 19 4 1275]] {'precision': 0.4499063670411985, 'recall': 0.7004373177842566, 'f1-score': 0.5478905359179019, 'support': 1372.0} 0.4499 0.7004 0.5479 1372.0 {'precision': 0.8504273504273504, 'recall': 0.43544857768052514, 'f1-score': 0.5759768451519537, 'support': 1371.0} 0.8504 0.4354 0.5760 1371.0 {'precision': 0.6224689745264533, 'recall': 0.6956204379562044, 'f1-score': 0.6570148224750086, 'support': 1370.0} 0.6225 0.6956 0.6570 1370.0 {'precision': 0.6186666666666667, 'recall': 0.34017595307917886, 'f1-score': 0.4389782403027436, 'support': 1364.0} 0.6187 0.3402 0.4390 1364.0 {'precision': 0.7378472222222222, 'recall': 0.9306569343065694, 'f1-score': 0.8231116849580373, 'support': 1370.0} 0.7378 0.9307 0.8231 1370.0 0.6559 0.6205 0.6086 6847.0 0.6559 0.6207 0.6087 6847.0
0.8655 2.0 856 0.8769 0.6648 0.6646 0.5874 [[1007 78 82 82 123]
[ 328 794 78 54 117]
[ 162 36 972 182 18]
[ 398 50 313 536 67]
[ 74 15 30 8 1243]] {'precision': 0.5114271203656678, 'recall': 0.7339650145772595, 'f1-score': 0.6028135288835678, 'support': 1372.0} 0.5114 0.7340 0.6028 1372.0 {'precision': 0.816032887975334, 'recall': 0.5791393143690736, 'f1-score': 0.6774744027303755, 'support': 1371.0} 0.8160 0.5791 0.6775 1371.0 {'precision': 0.6589830508474577, 'recall': 0.7094890510948905, 'f1-score': 0.6833040421792619, 'support': 1370.0} 0.6590 0.7095 0.6833 1370.0 {'precision': 0.6218097447795824, 'recall': 0.39296187683284456, 'f1-score': 0.48158131176999097, 'support': 1364.0} 0.6218 0.3930 0.4816 1364.0 {'precision': 0.7927295918367347, 'recall': 0.9072992700729927, 'f1-score': 0.8461538461538461, 'support': 1370.0} 0.7927 0.9073 0.8462 1370.0 0.6802 0.6646 0.6583 6847.0 0.6802 0.6648 0.6584 6847.0
0.8065 3.0 1284 0.7639 0.7037 0.7035 0.6356 [[1046 89 119 82 36]
[ 271 906 104 47 43]
[ 106 21 1116 126 1]
[ 266 35 408 646 9]
[ 141 51 60 14 1104]] {'precision': 0.571584699453552, 'recall': 0.7623906705539358, 'f1-score': 0.6533416614615865, 'support': 1372.0} 0.5716 0.7624 0.6533 1372.0 {'precision': 0.822141560798548, 'recall': 0.6608315098468271, 'f1-score': 0.7327133036797413, 'support': 1371.0} 0.8221 0.6608 0.7327 1371.0 {'precision': 0.6175982291090205, 'recall': 0.8145985401459854, 'f1-score': 0.7025495750708216, 'support': 1370.0} 0.6176 0.8146 0.7025 1370.0 {'precision': 0.7060109289617487, 'recall': 0.4736070381231672, 'f1-score': 0.566915313734094, 'support': 1364.0} 0.7060 0.4736 0.5669 1364.0 {'precision': 0.9253981559094719, 'recall': 0.8058394160583942, 'f1-score': 0.8614904408895825, 'support': 1370.0} 0.9254 0.8058 0.8615 1370.0 0.7285 0.7035 0.7034 6847.0 0.7285 0.7037 0.7035 6847.0
0.6598 4.0 1712 0.7694 0.6994 0.6992 0.6319 [[1106 42 82 80 62]
[ 379 735 117 60 80]
[ 133 17 1053 159 8]
[ 293 28 340 671 32]
[ 98 16 21 11 1224]] {'precision': 0.5505226480836237, 'recall': 0.8061224489795918, 'f1-score': 0.6542443064182195, 'support': 1372.0} 0.5505 0.8061 0.6542 1372.0 {'precision': 0.8770883054892601, 'recall': 0.5361050328227571, 'f1-score': 0.6654594839293798, 'support': 1371.0} 0.8771 0.5361 0.6655 1371.0 {'precision': 0.652820830750155, 'recall': 0.7686131386861313, 'f1-score': 0.7060006704659737, 'support': 1370.0} 0.6528 0.7686 0.7060 1370.0 {'precision': 0.6839959225280327, 'recall': 0.49193548387096775, 'f1-score': 0.5722814498933901, 'support': 1364.0} 0.6840 0.4919 0.5723 1364.0 {'precision': 0.8705547652916074, 'recall': 0.8934306569343066, 'f1-score': 0.8818443804034583, 'support': 1370.0} 0.8706 0.8934 0.8818 1370.0 0.7270 0.6992 0.6960 6847.0 0.7270 0.6994 0.6961 6847.0
0.5968 5.0 2140 0.7820 0.6991 0.6989 0.6335 [[1140 50 77 59 46]
[ 360 834 85 32 60]
[ 186 26 1007 140 11]
[ 384 56 293 593 38]
[ 129 19 6 3 1213]] {'precision': 0.5184174624829468, 'recall': 0.8309037900874635, 'f1-score': 0.6384766171940633, 'support': 1372.0} 0.5184 0.8309 0.6385 1372.0 {'precision': 0.8467005076142132, 'recall': 0.6083150984682714, 'f1-score': 0.7079796264855689, 'support': 1371.0} 0.8467 0.6083 0.7080 1371.0 {'precision': 0.6859673024523161, 'recall': 0.7350364963503649, 'f1-score': 0.7096546863988723, 'support': 1370.0} 0.6860 0.7350 0.7097 1370.0 {'precision': 0.717049576783555, 'recall': 0.4347507331378299, 'f1-score': 0.5413053400273847, 'support': 1364.0} 0.7170 0.4348 0.5413 1364.0 {'precision': 0.8866959064327485, 'recall': 0.8854014598540146, 'f1-score': 0.8860482103725348, 'support': 1370.0} 0.8867 0.8854 0.8860 1370.0 0.7310 0.6989 0.6967 6847.0 0.7309 0.6991 0.6968 6847.0
0.5675 6.0 2568 0.7603 0.7159 0.7157 0.6515 [[1135 54 69 73 41]
[ 333 828 92 50 68]
[ 161 23 1008 165 13]
[ 306 34 292 705 27]
[ 102 17 16 9 1226]] {'precision': 0.5571919489445263, 'recall': 0.827259475218659, 'f1-score': 0.665884423584629, 'support': 1372.0} 0.5572 0.8273 0.6659 1372.0 {'precision': 0.8661087866108786, 'recall': 0.6039387308533917, 'f1-score': 0.7116458960034379, 'support': 1371.0} 0.8661 0.6039 0.7116 1371.0 {'precision': 0.6824644549763034, 'recall': 0.7357664233576642, 'f1-score': 0.7081138040042149, 'support': 1370.0} 0.6825 0.7358 0.7081 1370.0 {'precision': 0.7035928143712575, 'recall': 0.5168621700879765, 'f1-score': 0.5959425190194421, 'support': 1364.0} 0.7036 0.5169 0.5959 1364.0 {'precision': 0.8916363636363637, 'recall': 0.8948905109489051, 'f1-score': 0.8932604735883425, 'support': 1370.0} 0.8916 0.8949 0.8933 1370.0 0.7402 0.7157 0.7150 6847.0 0.7402 0.7159 0.7151 6847.0
0.4824 7.0 2996 0.8064 0.6958 0.6956 0.6308 [[1178 37 62 69 26]
[ 396 787 80 57 51]
[ 188 14 993 172 3]
[ 378 32 287 650 17]
[ 173 16 17 8 1156]] {'precision': 0.5092952875054042, 'recall': 0.858600583090379, 'f1-score': 0.639348710990502, 'support': 1372.0} 0.5093 0.8586 0.6393 1372.0 {'precision': 0.8882618510158014, 'recall': 0.574033552151714, 'f1-score': 0.6973859105006646, 'support': 1371.0} 0.8883 0.5740 0.6974 1371.0 {'precision': 0.6900625434329395, 'recall': 0.7248175182481752, 'f1-score': 0.7070131719473122, 'support': 1370.0} 0.6901 0.7248 0.7070 1370.0 {'precision': 0.6799163179916318, 'recall': 0.47653958944281527, 'f1-score': 0.560344827586207, 'support': 1364.0} 0.6799 0.4765 0.5603 1364.0 {'precision': 0.922585794094174, 'recall': 0.8437956204379562, 'f1-score': 0.881433473122379, 'support': 1370.0} 0.9226 0.8438 0.8814 1370.0 0.7380 0.6956 0.6971 6847.0 0.7380 0.6958 0.6972 6847.0
0.6574 8.0 3424 0.7998 0.7035 0.7033 0.6385 [[1141 55 85 65 26]
[ 341 827 113 50 40]
[ 150 19 1084 113 4]
[ 321 47 353 624 19]
[ 166 32 25 6 1141]] {'precision': 0.5384615384615384, 'recall': 0.8316326530612245, 'f1-score': 0.6536808937267259, 'support': 1372.0} 0.5385 0.8316 0.6537 1372.0 {'precision': 0.8438775510204082, 'recall': 0.6032093362509118, 'f1-score': 0.7035304125903871, 'support': 1371.0} 0.8439 0.6032 0.7035 1371.0 {'precision': 0.653012048192771, 'recall': 0.7912408759124088, 'f1-score': 0.7155115511551154, 'support': 1370.0} 0.6530 0.7912 0.7155 1370.0 {'precision': 0.7272727272727273, 'recall': 0.4574780058651026, 'f1-score': 0.5616561656165616, 'support': 1364.0} 0.7273 0.4575 0.5617 1364.0 {'precision': 0.9276422764227642, 'recall': 0.8328467153284671, 'f1-score': 0.8776923076923077, 'support': 1370.0} 0.9276 0.8328 0.8777 1370.0 0.7381 0.7033 0.7024 6847.0 0.7380 0.7035 0.7025 6847.0
0.4709 9.0 3852 0.8032 0.7024 0.7021 0.6373 [[1161 47 70 68 26]
[ 365 794 98 62 52]
[ 177 16 1019 155 3]
[ 353 39 297 654 21]
[ 149 19 16 5 1181]] {'precision': 0.5265306122448979, 'recall': 0.8462099125364432, 'f1-score': 0.6491473301649426, 'support': 1372.0} 0.5265 0.8462 0.6491 1372.0 {'precision': 0.8677595628415301, 'recall': 0.5791393143690736, 'f1-score': 0.6946631671041119, 'support': 1371.0} 0.8678 0.5791 0.6947 1371.0 {'precision': 0.6793333333333333, 'recall': 0.7437956204379562, 'f1-score': 0.7101045296167248, 'support': 1370.0} 0.6793 0.7438 0.7101 1370.0 {'precision': 0.6927966101694916, 'recall': 0.47947214076246336, 'f1-score': 0.5667244367417678, 'support': 1364.0} 0.6928 0.4795 0.5667 1364.0 {'precision': 0.9204988308651598, 'recall': 0.862043795620438, 'f1-score': 0.8903128533735394, 'support': 1370.0} 0.9205 0.8620 0.8903 1370.0 0.7374 0.7021 0.7022 6847.0 0.7374 0.7024 0.7023 6847.0
0.3689 10.0 4280 0.8093 0.7082 0.7079 0.6447 [[1160 58 65 58 31]
[ 343 852 86 40 50]
[ 191 23 1015 136 5]
[ 383 52 284 624 21]
[ 130 24 13 5 1198]] {'precision': 0.5256003624830086, 'recall': 0.8454810495626822, 'f1-score': 0.648225761385862, 'support': 1372.0} 0.5256 0.8455 0.6482 1372.0 {'precision': 0.844400396432111, 'recall': 0.6214442013129103, 'f1-score': 0.7159663865546219, 'support': 1371.0} 0.8444 0.6214 0.7160 1371.0 {'precision': 0.69377990430622, 'recall': 0.7408759124087592, 'f1-score': 0.7165548888104484, 'support': 1370.0} 0.6938 0.7409 0.7166 1370.0 {'precision': 0.7230590961761297, 'recall': 0.4574780058651026, 'f1-score': 0.5603951504265828, 'support': 1364.0} 0.7231 0.4575 0.5604 1364.0 {'precision': 0.918007662835249, 'recall': 0.8744525547445255, 'f1-score': 0.8957009345794392, 'support': 1370.0} 0.9180 0.8745 0.8957 1370.0 0.7410 0.7079 0.7074 6847.0 0.7409 0.7082 0.7075 6847.0

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+git8bfa463
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for SushantGautam/videomae-small-finetuned-kinetics-finetuned-SNchunks-5c-a40

Finetuned
(3)
this model