sahajBERT Named Entity Recognition

Model description

sahajBERT fine-tuned for NER using the bengali split of WikiANN .

Named Entities predicted by the model:

Label id Label
0 O
1 B-PER
2 I-PER
3 B-ORG
4 I-ORG
5 B-LOC
6 I-LOC

Intended uses & limitations

How to use

You can use this model directly with a pipeline for masked language modeling:

from transformers import AlbertForTokenClassification, TokenClassificationPipeline, PreTrainedTokenizerFast

# Initialize tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("neuropark/sahajBERT-NER")

# Initialize model
model = AlbertForTokenClassification.from_pretrained("neuropark/sahajBERT-NER")

# Initialize pipeline
pipeline = TokenClassificationPipeline(tokenizer=tokenizer, model=model)

raw_text = "এই ইউনিয়নে ৩ টি মৌজা ও ১০ টি গ্রাম আছে ।" # Change me
output = pipeline(raw_text)

Limitations and bias

WIP

Training data

The model was initialized it with pre-trained weights of sahajBERT at step 19519 and trained on the bengali of WikiANN

Training procedure

Coming soon!

Eval results

loss: 0.11714419722557068

accuracy: 0.9772286821705426

precision: 0.9585365853658536

recall: 0.9651277013752456

f1 : 0.9618208516886931

BibTeX entry and citation info

Coming soon!

Downloads last month
62
Hosted inference API
Token Classification
This model can be loaded on the Inference API on-demand.