Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9400c082b072ce22_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9400c082b072ce22_train_data.json
  type:
    field_instruction: ja
    field_output: en
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/19783dba-2611-430a-89e2-4d277105a2fb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 9660
micro_batch_size: 2
mlflow_experiment_name: /tmp/9400c082b072ce22_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03388084783433621
wandb_entity: null
wandb_mode: online
wandb_name: 97f965f0-6c2c-4001-93f0-b3bd5a572767
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 97f965f0-6c2c-4001-93f0-b3bd5a572767
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

19783dba-2611-430a-89e2-4d277105a2fb

This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 9660

Training results

Training Loss Epoch Step Validation Loss
22.3081 0.0001 1 5.3931
12.1969 0.0084 150 3.0791
12.8922 0.0168 300 2.9534
12.5402 0.0252 450 2.8506
10.4376 0.0337 600 2.7774
9.6342 0.0421 750 2.7315
11.2411 0.0505 900 2.6845
12.9895 0.0589 1050 2.6467
12.0386 0.0673 1200 2.6053
11.1212 0.0757 1350 2.5762
9.9151 0.0842 1500 2.5369
11.2688 0.0926 1650 2.5001
10.0221 0.1010 1800 2.4761
10.3173 0.1094 1950 2.4375
10.428 0.1178 2100 2.4349
7.0369 0.1262 2250 2.3860
10.4659 0.1347 2400 2.3725
10.4187 0.1431 2550 2.3579
6.8085 0.1515 2700 2.3285
12.6518 0.1599 2850 2.3110
9.9324 0.1683 3000 2.2927
7.8111 0.1767 3150 2.2739
9.2326 0.1852 3300 2.2593
8.6382 0.1936 3450 2.2342
8.518 0.2020 3600 2.2290
6.4198 0.2104 3750 2.2118
9.0537 0.2188 3900 2.2064
6.6054 0.2272 4050 2.1808
8.1502 0.2357 4200 2.1758
7.229 0.2441 4350 2.1579
7.0952 0.2525 4500 2.1411
7.7773 0.2609 4650 2.1294
9.354 0.2693 4800 2.1157
9.6896 0.2777 4950 2.1120
9.817 0.2862 5100 2.0999
9.7308 0.2946 5250 2.0837
7.0272 0.3030 5400 2.0796
9.446 0.3114 5550 2.0694
9.1402 0.3198 5700 2.0556
7.8589 0.3282 5850 2.0542
8.3354 0.3367 6000 2.0445
8.081 0.3451 6150 2.0343
6.7192 0.3535 6300 2.0259
10.2732 0.3619 6450 2.0235
9.3245 0.3703 6600 2.0137
8.6904 0.3787 6750 2.0092
6.4253 0.3872 6900 2.0042
8.0254 0.3956 7050 1.9975
10.3048 0.4040 7200 1.9963
9.2663 0.4124 7350 1.9909
8.596 0.4208 7500 1.9860
9.4026 0.4292 7650 1.9820
7.5361 0.4377 7800 1.9791
10.1732 0.4461 7950 1.9773
9.5052 0.4545 8100 1.9737
9.1775 0.4629 8250 1.9720
5.179 0.4713 8400 1.9702
6.0604 0.4797 8550 1.9688
7.6645 0.4882 8700 1.9676
6.7768 0.4966 8850 1.9666
8.6168 0.5050 9000 1.9657
9.4105 0.5134 9150 1.9658
8.4106 0.5218 9300 1.9655
5.5724 0.5302 9450 1.9654
5.8533 0.5387 9600 1.9652

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Romain-XV/19783dba-2611-430a-89e2-4d277105a2fb

Adapter
(165)
this model