swinv2-tiny-patch4-window8-256-dmae-humeda-DAV24

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8851
  • Accuracy: 0.7059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.5614 1.0 17 1.6096 0.3176
6.1279 2.0 34 1.5651 0.3176
5.5089 3.0 51 1.3188 0.5529
4.453 4.0 68 1.0195 0.6353
3.3808 5.0 85 0.9741 0.5882
2.7707 6.0 102 0.8365 0.6353
2.3091 7.0 119 0.7725 0.6588
1.9831 8.0 136 0.8312 0.6588
1.8284 9.0 153 0.8473 0.7059
1.511 10.0 170 0.7539 0.7176
1.2827 11.0 187 0.8067 0.7176
1.2072 12.0 204 0.7927 0.7176
1.2069 13.0 221 0.8184 0.6824
0.9242 14.0 238 0.8548 0.7059
0.9772 15.0 255 0.8374 0.7294
0.8412 16.0 272 0.8340 0.7176
0.8921 17.0 289 0.8729 0.6941
0.7975 18.0 306 0.9115 0.7059
0.8107 19.0 323 0.8830 0.6941
0.7131 20.0 340 0.9049 0.6941
0.6777 21.0 357 0.8895 0.7059
0.6557 22.0 374 0.8831 0.7059
0.6555 23.0 391 0.8846 0.7059
0.7766 23.5455 400 0.8851 0.7059

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV24

Finetuned
(94)
this model