swinv2-tiny-patch4-window8-256-dmae-humeda-DAV17

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8543
  • Accuracy: 0.7885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 42

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9302 10 1.5864 0.2885
6.7245 1.9302 20 1.4466 0.4615
5.7484 2.9302 30 1.0303 0.5962
3.9879 3.9302 40 0.9820 0.5577
2.769 4.9302 50 0.8608 0.6538
2.3766 5.9302 60 0.8945 0.6923
2.3766 6.9302 70 0.7773 0.6346
1.9183 7.9302 80 0.8082 0.6346
1.4993 8.9302 90 0.9407 0.6923
1.3461 9.9302 100 0.9281 0.75
1.2085 10.9302 110 0.7563 0.7692
0.8413 11.9302 120 0.9108 0.7308
0.8413 12.9302 130 0.8543 0.7885
0.9607 13.9302 140 1.2058 0.6731
0.837 14.9302 150 0.9733 0.7115
0.7641 15.9302 160 1.0169 0.6538
0.7997 16.9302 170 0.8486 0.7308
0.6171 17.9302 180 0.9551 0.7885
0.6171 18.9302 190 1.0267 0.7308
0.6755 19.9302 200 1.1810 0.6923
0.6393 20.9302 210 1.0516 0.7308
0.573 21.9302 220 1.1029 0.7115
0.4657 22.9302 230 1.0257 0.7885
0.4626 23.9302 240 1.2266 0.6923
0.4626 24.9302 250 1.3491 0.6538
0.4899 25.9302 260 1.2055 0.7692
0.3991 26.9302 270 1.1633 0.6923
0.3778 27.9302 280 1.1751 0.7308
0.443 28.9302 290 1.1727 0.75
0.43 29.9302 300 1.3292 0.7115
0.43 30.9302 310 1.1873 0.7115
0.4425 31.9302 320 1.2326 0.6538
0.3098 32.9302 330 1.2379 0.7115
0.4086 33.9302 340 1.3020 0.6731
0.3046 34.9302 350 1.2686 0.7115
0.3503 35.9302 360 1.3006 0.6923
0.3503 36.9302 370 1.3207 0.6923
0.2985 37.9302 380 1.3626 0.7115
0.3445 38.9302 390 1.3689 0.7115
0.3017 39.9302 400 1.3523 0.7115
0.3446 40.9302 410 1.3447 0.7115
0.2799 41.9302 420 1.3395 0.7115

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
111
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV17

Finetuned
(94)
this model