swinv2-base-patch4-window8-256-dmae-humeda-DAV15

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8423
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 42

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8696 5 1.5972 0.3077
6.7562 1.8696 10 1.5357 0.3077
6.7562 2.8696 15 1.4954 0.4038
6.2842 3.8696 20 1.4612 0.3462
6.2842 4.8696 25 1.3875 0.3269
4.9858 5.8696 30 1.3370 0.3462
4.9858 6.8696 35 1.2739 0.4423
3.5596 7.8696 40 1.1774 0.4808
3.5596 8.8696 45 1.1214 0.4808
2.6814 9.8696 50 1.0999 0.5192
2.6814 10.8696 55 1.1773 0.4615
2.3236 11.8696 60 0.9874 0.5192
2.3236 12.8696 65 1.1124 0.5
1.8037 13.8696 70 0.8936 0.6538
1.8037 14.8696 75 1.2064 0.4423
1.6474 15.8696 80 0.8423 0.75
1.6474 16.8696 85 1.0134 0.6346
1.5505 17.8696 90 0.8965 0.6923
1.5505 18.8696 95 0.9215 0.6538
1.2697 19.8696 100 1.0155 0.6154
1.2697 20.8696 105 0.8500 0.7115
1.1783 21.8696 110 0.9573 0.6538
1.1783 22.8696 115 0.8915 0.6923
1.0235 23.8696 120 0.9831 0.6538
1.0235 24.8696 125 0.9464 0.6538
0.9706 25.8696 130 0.9413 0.6923
0.9706 26.8696 135 1.0249 0.6346
0.9409 27.8696 140 0.9754 0.6538
0.9409 28.8696 145 0.9530 0.7115
0.9447 29.8696 150 1.0266 0.6538
0.9447 30.8696 155 1.0819 0.6538
0.8352 31.8696 160 0.9922 0.6923
0.8352 32.8696 165 0.9755 0.6923
0.8055 33.8696 170 0.9768 0.7115
0.8055 34.8696 175 0.9950 0.6923
0.7481 35.8696 180 1.0135 0.6923
0.7481 36.8696 185 1.0168 0.6923
0.7483 37.8696 190 1.0091 0.6923
0.7483 38.8696 195 1.0055 0.6923
0.8145 39.8696 200 1.0040 0.6923
0.8145 40.8696 205 1.0039 0.6923
0.7501 41.8696 210 1.0038 0.6923

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
86.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RobertoSonic/swinv2-base-patch4-window8-256-dmae-humeda-DAV15

Finetuned
(14)
this model