YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
OmniCorso-7B - GGUF
- Model creator: https://huggingface.co/macadeliccc/
- Original model: https://huggingface.co/macadeliccc/OmniCorso-7B/
Name | Quant method | Size |
---|---|---|
OmniCorso-7B.Q2_K.gguf | Q2_K | 2.53GB |
OmniCorso-7B.IQ3_XS.gguf | IQ3_XS | 2.81GB |
OmniCorso-7B.IQ3_S.gguf | IQ3_S | 2.96GB |
OmniCorso-7B.Q3_K_S.gguf | Q3_K_S | 2.95GB |
OmniCorso-7B.IQ3_M.gguf | IQ3_M | 3.06GB |
OmniCorso-7B.Q3_K.gguf | Q3_K | 3.28GB |
OmniCorso-7B.Q3_K_M.gguf | Q3_K_M | 3.28GB |
OmniCorso-7B.Q3_K_L.gguf | Q3_K_L | 3.56GB |
OmniCorso-7B.IQ4_XS.gguf | IQ4_XS | 3.67GB |
OmniCorso-7B.Q4_0.gguf | Q4_0 | 3.83GB |
OmniCorso-7B.IQ4_NL.gguf | IQ4_NL | 3.87GB |
OmniCorso-7B.Q4_K_S.gguf | Q4_K_S | 3.86GB |
OmniCorso-7B.Q4_K.gguf | Q4_K | 4.07GB |
OmniCorso-7B.Q4_K_M.gguf | Q4_K_M | 4.07GB |
OmniCorso-7B.Q4_1.gguf | Q4_1 | 4.24GB |
OmniCorso-7B.Q5_0.gguf | Q5_0 | 4.65GB |
OmniCorso-7B.Q5_K_S.gguf | Q5_K_S | 4.65GB |
OmniCorso-7B.Q5_K.gguf | Q5_K | 4.78GB |
OmniCorso-7B.Q5_K_M.gguf | Q5_K_M | 4.78GB |
OmniCorso-7B.Q5_1.gguf | Q5_1 | 5.07GB |
OmniCorso-7B.Q6_K.gguf | Q6_K | 5.53GB |
OmniCorso-7B.Q8_0.gguf | Q8_0 | 7.17GB |
Original model description:
license: cc tags: - mergekit - merge base_model: - macadeliccc/MBX-7B-v3-DPO - mlabonne/OmniBeagle-7B model-index: - name: OmniCorso-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.91 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 73.43 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B name: Open LLM Leaderboard
OmniCorso-7B
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B")
messages = [
{"role": "system", "content": "Respond to the users request like a pirate"},
{"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: mlabonne/OmniBeagle-7B
layer_range: [0, 32]
- model: macadeliccc/MBX-7B-v3-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: macadeliccc/MBX-7B-v3-DPO
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Quantizations
GGUF
Exllamav2
Quants are available thanks to user bartowski, check them out here
Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
---|---|---|---|---|---|---|
8_0 | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
6_5 | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, recommended. |
5_0 | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
4_25 | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
3_5 | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
Evaluations
----Benchmark Complete---- 2024-02-11 15:34:40 Time taken: 178.3 mins Prompt Format: ChatML Model: macadeliccc/OmniCorso-7B Score (v2): 73.75 Parseable: 167.0 --------------- Batch completed Time taken: 178.3 mins ---------------
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
OmniCorso-7B | 45.89 | 77.66 | 74.12 | 49.24 | 61.73 |
AGIEval
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 29.13 | ± | 2.86 |
acc_norm | 27.17 | ± | 2.80 | ||
agieval_logiqa_en | 0 | acc | 39.32 | ± | 1.92 |
acc_norm | 39.63 | ± | 1.92 | ||
agieval_lsat_ar | 0 | acc | 23.91 | ± | 2.82 |
acc_norm | 23.91 | ± | 2.82 | ||
agieval_lsat_lr | 0 | acc | 53.14 | ± | 2.21 |
acc_norm | 53.92 | ± | 2.21 | ||
agieval_lsat_rc | 0 | acc | 66.54 | ± | 2.88 |
acc_norm | 67.29 | ± | 2.87 | ||
agieval_sat_en | 0 | acc | 80.58 | ± | 2.76 |
acc_norm | 80.58 | ± | 2.76 | ||
agieval_sat_en_without_passage | 0 | acc | 45.63 | ± | 3.48 |
acc_norm | 43.69 | ± | 3.46 | ||
agieval_sat_math | 0 | acc | 33.18 | ± | 3.18 |
acc_norm | 30.91 | ± | 3.12 |
Average: 45.89%
GPT4All
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 67.32 | ± | 1.37 |
acc_norm | 68.43 | ± | 1.36 | ||
arc_easy | 0 | acc | 87.46 | ± | 0.68 |
acc_norm | 83.50 | ± | 0.76 | ||
boolq | 1 | acc | 88.13 | ± | 0.57 |
hellaswag | 0 | acc | 68.47 | ± | 0.46 |
acc_norm | 86.96 | ± | 0.34 | ||
openbookqa | 0 | acc | 38.80 | ± | 2.18 |
acc_norm | 50.00 | ± | 2.24 | ||
piqa | 0 | acc | 83.03 | ± | 0.88 |
acc_norm | 85.31 | ± | 0.83 | ||
winogrande | 0 | acc | 81.29 | ± | 1.10 |
Average: 77.66%
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 58.26 | ± | 1.73 |
mc2 | 74.12 | ± | 1.43 |
Average: 74.12%
Bigbench
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 56.84 | ± | 3.60 |
bigbench_date_understanding | 0 | multiple_choice_grade | 63.41 | ± | 2.51 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 49.22 | ± | 3.12 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 23.96 | ± | 2.26 |
exact_str_match | 1.39 | ± | 0.62 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 34.20 | ± | 2.12 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 23.71 | ± | 1.61 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 60.33 | ± | 2.83 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 49.00 | ± | 2.24 |
bigbench_navigate | 0 | multiple_choice_grade | 55.20 | ± | 1.57 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 70.75 | ± | 1.02 |
bigbench_ruin_names | 0 | multiple_choice_grade | 55.80 | ± | 2.35 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 36.97 | ± | 1.53 |
bigbench_snarks | 0 | multiple_choice_grade | 72.38 | ± | 3.33 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 76.27 | ± | 1.36 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 54.50 | ± | 1.58 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 23.12 | ± | 1.19 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 20.34 | ± | 0.96 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 60.33 | ± | 2.83 |
Average: 49.24%
Average score: 61.73%
Elapsed time: 02:20:06
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.74 |
AI2 Reasoning Challenge (25-Shot) | 72.70 |
HellaSwag (10-Shot) | 88.70 |
MMLU (5-Shot) | 64.91 |
TruthfulQA (0-shot) | 73.43 |
Winogrande (5-shot) | 83.74 |
GSM8k (5-shot) | 70.96 |
- Downloads last month
- 193