OmniCorso-7B
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B")
messages = [
{"role": "system", "content": "Respond to the users request like a pirate"},
{"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: mlabonne/OmniBeagle-7B
layer_range: [0, 32]
- model: macadeliccc/MBX-7B-v3-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: macadeliccc/MBX-7B-v3-DPO
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Quantizations
GGUF
Exllamav2
Quants are available thanks to user bartowski, check them out here
Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
---|---|---|---|---|---|---|
8_0 | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
6_5 | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, recommended. |
5_0 | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
4_25 | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
3_5 | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
Evaluations
----Benchmark Complete---- 2024-02-11 15:34:40 Time taken: 178.3 mins Prompt Format: ChatML Model: macadeliccc/OmniCorso-7B Score (v2): 73.75 Parseable: 167.0 --------------- Batch completed Time taken: 178.3 mins ---------------
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
OmniCorso-7B | 45.89 | 77.66 | 74.12 | 49.24 | 61.73 |
AGIEval
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 29.13 | ± | 2.86 |
acc_norm | 27.17 | ± | 2.80 | ||
agieval_logiqa_en | 0 | acc | 39.32 | ± | 1.92 |
acc_norm | 39.63 | ± | 1.92 | ||
agieval_lsat_ar | 0 | acc | 23.91 | ± | 2.82 |
acc_norm | 23.91 | ± | 2.82 | ||
agieval_lsat_lr | 0 | acc | 53.14 | ± | 2.21 |
acc_norm | 53.92 | ± | 2.21 | ||
agieval_lsat_rc | 0 | acc | 66.54 | ± | 2.88 |
acc_norm | 67.29 | ± | 2.87 | ||
agieval_sat_en | 0 | acc | 80.58 | ± | 2.76 |
acc_norm | 80.58 | ± | 2.76 | ||
agieval_sat_en_without_passage | 0 | acc | 45.63 | ± | 3.48 |
acc_norm | 43.69 | ± | 3.46 | ||
agieval_sat_math | 0 | acc | 33.18 | ± | 3.18 |
acc_norm | 30.91 | ± | 3.12 |
Average: 45.89%
GPT4All
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 67.32 | ± | 1.37 |
acc_norm | 68.43 | ± | 1.36 | ||
arc_easy | 0 | acc | 87.46 | ± | 0.68 |
acc_norm | 83.50 | ± | 0.76 | ||
boolq | 1 | acc | 88.13 | ± | 0.57 |
hellaswag | 0 | acc | 68.47 | ± | 0.46 |
acc_norm | 86.96 | ± | 0.34 | ||
openbookqa | 0 | acc | 38.80 | ± | 2.18 |
acc_norm | 50.00 | ± | 2.24 | ||
piqa | 0 | acc | 83.03 | ± | 0.88 |
acc_norm | 85.31 | ± | 0.83 | ||
winogrande | 0 | acc | 81.29 | ± | 1.10 |
Average: 77.66%
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 58.26 | ± | 1.73 |
mc2 | 74.12 | ± | 1.43 |
Average: 74.12%
Bigbench
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 56.84 | ± | 3.60 |
bigbench_date_understanding | 0 | multiple_choice_grade | 63.41 | ± | 2.51 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 49.22 | ± | 3.12 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 23.96 | ± | 2.26 |
exact_str_match | 1.39 | ± | 0.62 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 34.20 | ± | 2.12 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 23.71 | ± | 1.61 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 60.33 | ± | 2.83 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 49.00 | ± | 2.24 |
bigbench_navigate | 0 | multiple_choice_grade | 55.20 | ± | 1.57 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 70.75 | ± | 1.02 |
bigbench_ruin_names | 0 | multiple_choice_grade | 55.80 | ± | 2.35 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 36.97 | ± | 1.53 |
bigbench_snarks | 0 | multiple_choice_grade | 72.38 | ± | 3.33 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 76.27 | ± | 1.36 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 54.50 | ± | 1.58 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 23.12 | ± | 1.19 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 20.34 | ± | 0.96 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 60.33 | ± | 2.83 |
Average: 49.24%
Average score: 61.73%
Elapsed time: 02:20:06
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.74 |
AI2 Reasoning Challenge (25-Shot) | 72.70 |
HellaSwag (10-Shot) | 88.70 |
MMLU (5-Shot) | 64.91 |
TruthfulQA (0-shot) | 73.43 |
Winogrande (5-shot) | 83.74 |
GSM8k (5-shot) | 70.96 |
- Downloads last month
- 152
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for macadeliccc/OmniCorso-7B
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard72.700
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.700
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.910
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard73.430
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard83.740
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard70.960