llama3_darulm_20_05_24_part1-2_128000_unigram_full_lr2e4_bs256_v2
This model is a fine-tuned version of RefalMachine/llama3_darulm_20_05_24_part1-2_128000_unigram_mean_init_03_07_24 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3100
- Accuracy: 0.5219
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.6881 | 0.05 | 2000 | 2.4866 | 0.4992 |
2.64 | 0.1 | 4000 | 2.4321 | 0.5052 |
2.5962 | 0.15 | 6000 | 2.4034 | 0.5089 |
2.5811 | 0.2 | 8000 | 2.3834 | 0.5109 |
2.5691 | 0.25 | 10000 | 2.3696 | 0.5128 |
2.5551 | 0.3 | 12000 | 2.3579 | 0.5143 |
2.5402 | 0.35 | 14000 | 2.3489 | 0.5156 |
2.5432 | 0.4 | 16000 | 2.3398 | 0.5170 |
2.5132 | 0.45 | 18000 | 2.3329 | 0.5179 |
2.516 | 0.5 | 20000 | 2.3267 | 0.5191 |
2.5174 | 0.55 | 22000 | 2.3215 | 0.5199 |
2.5093 | 0.6 | 24000 | 2.3173 | 0.5205 |
2.5058 | 0.65 | 26000 | 2.3141 | 0.5211 |
2.4861 | 0.7 | 28000 | 2.3121 | 0.5216 |
2.49 | 0.75 | 30000 | 2.3109 | 0.5217 |
2.5012 | 0.8 | 32000 | 2.3103 | 0.5217 |
2.5316 | 0.85 | 34000 | 2.3101 | 0.5218 |
2.513 | 0.9 | 36000 | 2.3100 | 0.5218 |
2.512 | 0.95 | 38000 | 2.3099 | 0.5219 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.