llama3_darulm_20_05_24_part1-2_128000_unigram_full_lr2e4_bs256
This model is a fine-tuned version of RefalMachine/llama3_darulm_20_05_24_part1-2_128000_unigram_mean_init_03_07_24 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3207
- Accuracy: 0.5205
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.6763 | 0.05 | 2000 | 2.5009 | 0.4975 |
2.6386 | 0.09 | 4000 | 2.4465 | 0.5035 |
2.6025 | 0.14 | 6000 | 2.4178 | 0.5068 |
2.5851 | 0.19 | 8000 | 2.3972 | 0.5093 |
2.5515 | 0.23 | 10000 | 2.3840 | 0.5110 |
2.5361 | 0.28 | 12000 | 2.3724 | 0.5126 |
2.5355 | 0.33 | 14000 | 2.3619 | 0.5139 |
2.5465 | 0.38 | 16000 | 2.3532 | 0.5152 |
2.5198 | 0.42 | 18000 | 2.3464 | 0.5162 |
2.5357 | 0.47 | 20000 | 2.3403 | 0.5172 |
2.5281 | 0.52 | 22000 | 2.3350 | 0.5181 |
2.5159 | 0.56 | 24000 | 2.3303 | 0.5188 |
2.5251 | 0.61 | 26000 | 2.3268 | 0.5192 |
2.5003 | 0.66 | 28000 | 2.3244 | 0.5197 |
2.4979 | 0.7 | 30000 | 2.3228 | 0.5200 |
2.4759 | 0.75 | 32000 | 2.3216 | 0.5203 |
2.5254 | 0.8 | 34000 | 2.3211 | 0.5204 |
2.4972 | 0.84 | 36000 | 2.3209 | 0.5204 |
2.5232 | 0.89 | 38000 | 2.3208 | 0.5204 |
2.5032 | 0.94 | 40000 | 2.3207 | 0.5204 |
2.5036 | 0.99 | 42000 | 2.3207 | 0.5205 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.