llama3_darulm_20_05_24_part1-2_128000_unigram_full_lr1e4_bs256
This model is a fine-tuned version of RefalMachine/llama3_darulm_20_05_24_part1-2_128000_unigram_mean_init_03_07_24 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4015
- Accuracy: 0.5124
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.782 | 0.05 | 2000 | 2.5768 | 0.4926 |
2.7184 | 0.1 | 4000 | 2.5054 | 0.4995 |
2.6719 | 0.15 | 6000 | 2.4719 | 0.5033 |
2.6543 | 0.2 | 8000 | 2.4528 | 0.5053 |
2.6417 | 0.25 | 10000 | 2.4394 | 0.5070 |
2.6312 | 0.3 | 12000 | 2.4294 | 0.5083 |
2.6185 | 0.35 | 14000 | 2.4227 | 0.5092 |
2.6238 | 0.4 | 16000 | 2.4164 | 0.5101 |
2.5977 | 0.45 | 18000 | 2.4122 | 0.5108 |
2.6029 | 0.5 | 20000 | 2.4091 | 0.5112 |
2.6077 | 0.55 | 22000 | 2.4067 | 0.5116 |
2.601 | 0.6 | 24000 | 2.4045 | 0.5119 |
2.5995 | 0.65 | 26000 | 2.4031 | 0.5123 |
2.5794 | 0.7 | 28000 | 2.4024 | 0.5123 |
2.5852 | 0.75 | 30000 | 2.4018 | 0.5124 |
2.5965 | 0.8 | 32000 | 2.4016 | 0.5123 |
2.6294 | 0.85 | 34000 | 2.4015 | 0.5124 |
2.6095 | 0.9 | 36000 | 2.4015 | 0.5124 |
2.6093 | 0.95 | 38000 | 2.4014 | 0.5124 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.