distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5120
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1876 | 0.9912 | 56 | 2.0708 | 0.45 |
1.5886 | 2.0 | 113 | 1.5004 | 0.56 |
1.208 | 2.9912 | 169 | 1.2087 | 0.64 |
0.9477 | 4.0 | 226 | 1.0389 | 0.7 |
0.7717 | 4.9912 | 282 | 0.7855 | 0.8 |
0.6776 | 6.0 | 339 | 0.7336 | 0.81 |
0.5734 | 6.9912 | 395 | 0.6742 | 0.83 |
0.4696 | 8.0 | 452 | 0.5968 | 0.85 |
0.3647 | 8.9912 | 508 | 0.5672 | 0.85 |
0.3598 | 10.0 | 565 | 0.5478 | 0.86 |
0.2732 | 10.9912 | 621 | 0.5595 | 0.84 |
0.3225 | 11.8938 | 672 | 0.5120 | 0.87 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for Rajeshwari-SS/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert