Add ApplyRoPE and RMSNorm kernels written in OpenAI Triton
#6
by
wangzihan99
- opened
- NOTICE +229 -1
- README.md +5 -5
- assets/logo.jpg +0 -0
- assets/wechat.png +0 -0
- config.json +2 -1
- configuration_qwen.py +2 -0
- generation_config.json +11 -11
- modeling_qwen.py +95 -145
- tokenizer_config.json +1 -1
- triton_kernels.py +115 -0
NOTICE
CHANGED
@@ -49,4 +49,232 @@ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
49 |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
50 |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
51 |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
52 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
50 |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
51 |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
52 |
+
SOFTWARE.
|
53 |
+
|
54 |
+
------------- LICENSE FOR stanford_alpaca code --------------
|
55 |
+
|
56 |
+
Apache License
|
57 |
+
Version 2.0, January 2004
|
58 |
+
http://www.apache.org/licenses/
|
59 |
+
|
60 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
61 |
+
|
62 |
+
1. Definitions.
|
63 |
+
|
64 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
65 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
66 |
+
|
67 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
68 |
+
the copyright owner that is granting the License.
|
69 |
+
|
70 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
71 |
+
other entities that control, are controlled by, or are under common
|
72 |
+
control with that entity. For the purposes of this definition,
|
73 |
+
"control" means (i) the power, direct or indirect, to cause the
|
74 |
+
direction or management of such entity, whether by contract or
|
75 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
76 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
77 |
+
|
78 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
79 |
+
exercising permissions granted by this License.
|
80 |
+
|
81 |
+
"Source" form shall mean the preferred form for making modifications,
|
82 |
+
including but not limited to software source code, documentation
|
83 |
+
source, and configuration files.
|
84 |
+
|
85 |
+
"Object" form shall mean any form resulting from mechanical
|
86 |
+
transformation or translation of a Source form, including but
|
87 |
+
not limited to compiled object code, generated documentation,
|
88 |
+
and conversions to other media types.
|
89 |
+
|
90 |
+
"Work" shall mean the work of authorship, whether in Source or
|
91 |
+
Object form, made available under the License, as indicated by a
|
92 |
+
copyright notice that is included in or attached to the work
|
93 |
+
(an example is provided in the Appendix below).
|
94 |
+
|
95 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
96 |
+
form, that is based on (or derived from) the Work and for which the
|
97 |
+
editorial revisions, annotations, elaborations, or other modifications
|
98 |
+
represent, as a whole, an original work of authorship. For the purposes
|
99 |
+
of this License, Derivative Works shall not include works that remain
|
100 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
101 |
+
the Work and Derivative Works thereof.
|
102 |
+
|
103 |
+
"Contribution" shall mean any work of authorship, including
|
104 |
+
the original version of the Work and any modifications or additions
|
105 |
+
to that Work or Derivative Works thereof, that is intentionally
|
106 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
107 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
108 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
109 |
+
means any form of electronic, verbal, or written communication sent
|
110 |
+
to the Licensor or its representatives, including but not limited to
|
111 |
+
communication on electronic mailing lists, source code control systems,
|
112 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
113 |
+
Licensor for the purpose of discussing and improving the Work, but
|
114 |
+
excluding communication that is conspicuously marked or otherwise
|
115 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
116 |
+
|
117 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
118 |
+
on behalf of whom a Contribution has been received by Licensor and
|
119 |
+
subsequently incorporated within the Work.
|
120 |
+
|
121 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
122 |
+
this License, each Contributor hereby grants to You a perpetual,
|
123 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
124 |
+
copyright license to reproduce, prepare Derivative Works of,
|
125 |
+
publicly display, publicly perform, sublicense, and distribute the
|
126 |
+
Work and such Derivative Works in Source or Object form.
|
127 |
+
|
128 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
129 |
+
this License, each Contributor hereby grants to You a perpetual,
|
130 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
131 |
+
(except as stated in this section) patent license to make, have made,
|
132 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
133 |
+
where such license applies only to those patent claims licensable
|
134 |
+
by such Contributor that are necessarily infringed by their
|
135 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
136 |
+
with the Work to which such Contribution(s) was submitted. If You
|
137 |
+
institute patent litigation against any entity (including a
|
138 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
139 |
+
or a Contribution incorporated within the Work constitutes direct
|
140 |
+
or contributory patent infringement, then any patent licenses
|
141 |
+
granted to You under this License for that Work shall terminate
|
142 |
+
as of the date such litigation is filed.
|
143 |
+
|
144 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
145 |
+
Work or Derivative Works thereof in any medium, with or without
|
146 |
+
modifications, and in Source or Object form, provided that You
|
147 |
+
meet the following conditions:
|
148 |
+
|
149 |
+
(a) You must give any other recipients of the Work or
|
150 |
+
Derivative Works a copy of this License; and
|
151 |
+
|
152 |
+
(b) You must cause any modified files to carry prominent notices
|
153 |
+
stating that You changed the files; and
|
154 |
+
|
155 |
+
(c) You must retain, in the Source form of any Derivative Works
|
156 |
+
that You distribute, all copyright, patent, trademark, and
|
157 |
+
attribution notices from the Source form of the Work,
|
158 |
+
excluding those notices that do not pertain to any part of
|
159 |
+
the Derivative Works; and
|
160 |
+
|
161 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
162 |
+
distribution, then any Derivative Works that You distribute must
|
163 |
+
include a readable copy of the attribution notices contained
|
164 |
+
within such NOTICE file, excluding those notices that do not
|
165 |
+
pertain to any part of the Derivative Works, in at least one
|
166 |
+
of the following places: within a NOTICE text file distributed
|
167 |
+
as part of the Derivative Works; within the Source form or
|
168 |
+
documentation, if provided along with the Derivative Works; or,
|
169 |
+
within a display generated by the Derivative Works, if and
|
170 |
+
wherever such third-party notices normally appear. The contents
|
171 |
+
of the NOTICE file are for informational purposes only and
|
172 |
+
do not modify the License. You may add Your own attribution
|
173 |
+
notices within Derivative Works that You distribute, alongside
|
174 |
+
or as an addendum to the NOTICE text from the Work, provided
|
175 |
+
that such additional attribution notices cannot be construed
|
176 |
+
as modifying the License.
|
177 |
+
|
178 |
+
You may add Your own copyright statement to Your modifications and
|
179 |
+
may provide additional or different license terms and conditions
|
180 |
+
for use, reproduction, or distribution of Your modifications, or
|
181 |
+
for any such Derivative Works as a whole, provided Your use,
|
182 |
+
reproduction, and distribution of the Work otherwise complies with
|
183 |
+
the conditions stated in this License.
|
184 |
+
|
185 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
186 |
+
any Contribution intentionally submitted for inclusion in the Work
|
187 |
+
by You to the Licensor shall be under the terms and conditions of
|
188 |
+
this License, without any additional terms or conditions.
|
189 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
190 |
+
the terms of any separate license agreement you may have executed
|
191 |
+
with Licensor regarding such Contributions.
|
192 |
+
|
193 |
+
6. Trademarks. This License does not grant permission to use the trade
|
194 |
+
names, trademarks, service marks, or product names of the Licensor,
|
195 |
+
except as required for reasonable and customary use in describing the
|
196 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
197 |
+
|
198 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
199 |
+
agreed to in writing, Licensor provides the Work (and each
|
200 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
202 |
+
implied, including, without limitation, any warranties or conditions
|
203 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
204 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
205 |
+
appropriateness of using or redistributing the Work and assume any
|
206 |
+
risks associated with Your exercise of permissions under this License.
|
207 |
+
|
208 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
209 |
+
whether in tort (including negligence), contract, or otherwise,
|
210 |
+
unless required by applicable law (such as deliberate and grossly
|
211 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
212 |
+
liable to You for damages, including any direct, indirect, special,
|
213 |
+
incidental, or consequential damages of any character arising as a
|
214 |
+
result of this License or out of the use or inability to use the
|
215 |
+
Work (including but not limited to damages for loss of goodwill,
|
216 |
+
work stoppage, computer failure or malfunction, or any and all
|
217 |
+
other commercial damages or losses), even if such Contributor
|
218 |
+
has been advised of the possibility of such damages.
|
219 |
+
|
220 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
221 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
222 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
223 |
+
or other liability obligations and/or rights consistent with this
|
224 |
+
License. However, in accepting such obligations, You may act only
|
225 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
226 |
+
of any other Contributor, and only if You agree to indemnify,
|
227 |
+
defend, and hold each Contributor harmless for any liability
|
228 |
+
incurred by, or claims asserted against, such Contributor by reason
|
229 |
+
of your accepting any such warranty or additional liability.
|
230 |
+
|
231 |
+
END OF TERMS AND CONDITIONS
|
232 |
+
|
233 |
+
APPENDIX: How to apply the Apache License to your work.
|
234 |
+
|
235 |
+
To apply the Apache License to your work, attach the following
|
236 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
237 |
+
replaced with your own identifying information. (Don't include
|
238 |
+
the brackets!) The text should be enclosed in the appropriate
|
239 |
+
comment syntax for the file format. We also recommend that a
|
240 |
+
file or class name and description of purpose be included on the
|
241 |
+
same "printed page" as the copyright notice for easier
|
242 |
+
identification within third-party archives.
|
243 |
+
|
244 |
+
Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
245 |
+
|
246 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
247 |
+
you may not use this file except in compliance with the License.
|
248 |
+
You may obtain a copy of the License at
|
249 |
+
|
250 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
251 |
+
|
252 |
+
Unless required by applicable law or agreed to in writing, software
|
253 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
254 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
255 |
+
See the License for the specific language governing permissions and
|
256 |
+
limitations under the License.
|
257 |
+
|
258 |
+
------------- LICENSE FOR PanQiWei AutoGPTQ code --------------
|
259 |
+
|
260 |
+
MIT License
|
261 |
+
|
262 |
+
Copyright (c) 2023 潘其威(William)
|
263 |
+
|
264 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
265 |
+
of this software and associated documentation files (the "Software"), to deal
|
266 |
+
in the Software without restriction, including without limitation the rights
|
267 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
268 |
+
copies of the Software, and to permit persons to whom the Software is
|
269 |
+
furnished to do so, subject to the following conditions:
|
270 |
+
|
271 |
+
The above copyright notice and this permission notice shall be included in all
|
272 |
+
copies or substantial portions of the Software.
|
273 |
+
|
274 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
275 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
276 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
277 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
278 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
279 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
280 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -16,11 +16,11 @@ inference: false
|
|
16 |
<br>
|
17 |
|
18 |
<p align="center">
|
19 |
-
🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>   |    📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a
|
20 |
<br>
|
21 |
-
<a href="
|
22 |
</p>
|
23 |
-
<br
|
24 |
|
25 |
## 介绍(Introduction)
|
26 |
|
@@ -597,9 +597,9 @@ If you find our work helpful, feel free to give us a cite.
|
|
597 |
|
598 |
## 使用协议(License Agreement)
|
599 |
|
600 |
-
我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/
|
601 |
|
602 |
-
Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen/blob/main/
|
603 |
<br>
|
604 |
|
605 |
|
|
|
16 |
<br>
|
17 |
|
18 |
<p align="center">
|
19 |
+
🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>   |   🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>   |    📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a>    |   🖥️ <a href="https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary">Demo</a>
|
20 |
<br>
|
21 |
+
<a href="assets/wechat.png">WeChat (微信)</a>   |   <a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>   |   <a href="https://dashscope.aliyun.com">API</a>
|
22 |
</p>
|
23 |
+
<br>
|
24 |
|
25 |
## 介绍(Introduction)
|
26 |
|
|
|
597 |
|
598 |
## 使用协议(License Agreement)
|
599 |
|
600 |
+
我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)了解具体的开源协议细节。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
|
601 |
|
602 |
+
Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) for more details about the license. If you have requirements for commercial use, please fill out the [form](https://dashscope.console.aliyun.com/openModelApply/qianwen) to apply.
|
603 |
<br>
|
604 |
|
605 |
|
assets/logo.jpg
CHANGED
![]() |
![]() |
assets/wechat.png
CHANGED
![]() |
![]() |
config.json
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"initializer_range": 0.02,
|
17 |
"kv_channels": 128,
|
18 |
"layer_norm_epsilon": 1e-06,
|
19 |
-
"max_position_embeddings":
|
20 |
"model_type": "qwen",
|
21 |
"no_bias": true,
|
22 |
"num_attention_heads": 32,
|
@@ -44,6 +44,7 @@
|
|
44 |
"use_cache": true,
|
45 |
"use_dynamic_ntk": true,
|
46 |
"use_flash_attn": "auto",
|
|
|
47 |
"use_logn_attn": true,
|
48 |
"vocab_size": 151936
|
49 |
}
|
|
|
16 |
"initializer_range": 0.02,
|
17 |
"kv_channels": 128,
|
18 |
"layer_norm_epsilon": 1e-06,
|
19 |
+
"max_position_embeddings": 32768,
|
20 |
"model_type": "qwen",
|
21 |
"no_bias": true,
|
22 |
"num_attention_heads": 32,
|
|
|
44 |
"use_cache": true,
|
45 |
"use_dynamic_ntk": true,
|
46 |
"use_flash_attn": "auto",
|
47 |
+
"use_triton": "auto",
|
48 |
"use_logn_attn": true,
|
49 |
"vocab_size": 151936
|
50 |
}
|
configuration_qwen.py
CHANGED
@@ -32,6 +32,7 @@ class QWenConfig(PretrainedConfig):
|
|
32 |
use_dynamic_ntk=True,
|
33 |
use_logn_attn=True,
|
34 |
use_flash_attn="auto",
|
|
|
35 |
intermediate_size=22016,
|
36 |
no_bias=True,
|
37 |
tie_word_embeddings=False,
|
@@ -61,6 +62,7 @@ class QWenConfig(PretrainedConfig):
|
|
61 |
self.use_dynamic_ntk = use_dynamic_ntk
|
62 |
self.use_logn_attn = use_logn_attn
|
63 |
self.use_flash_attn = use_flash_attn
|
|
|
64 |
self.no_bias = no_bias
|
65 |
self.use_cache_quantization = use_cache_quantization
|
66 |
self.use_cache_kernel = use_cache_kernel
|
|
|
32 |
use_dynamic_ntk=True,
|
33 |
use_logn_attn=True,
|
34 |
use_flash_attn="auto",
|
35 |
+
use_triton="auto",
|
36 |
intermediate_size=22016,
|
37 |
no_bias=True,
|
38 |
tie_word_embeddings=False,
|
|
|
62 |
self.use_dynamic_ntk = use_dynamic_ntk
|
63 |
self.use_logn_attn = use_logn_attn
|
64 |
self.use_flash_attn = use_flash_attn
|
65 |
+
self.use_triton = use_triton
|
66 |
self.no_bias = no_bias
|
67 |
self.use_cache_quantization = use_cache_quantization
|
68 |
self.use_cache_kernel = use_cache_kernel
|
generation_config.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
}
|
|
|
1 |
{
|
2 |
+
"chat_format": "chatml",
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"pad_token_id": 151643,
|
5 |
+
"max_window_size": 24000,
|
6 |
+
"max_new_tokens": 512,
|
7 |
+
"do_sample": true,
|
8 |
+
"top_k": 0,
|
9 |
+
"top_p": 0.8,
|
10 |
+
"repetition_penalty": 1.1,
|
11 |
+
"transformers_version": "4.31.0"
|
12 |
+
}
|
modeling_qwen.py
CHANGED
@@ -13,7 +13,6 @@ import torch
|
|
13 |
import torch.nn.functional as F
|
14 |
import torch.utils.checkpoint
|
15 |
import warnings
|
16 |
-
from torch.cuda.amp import autocast
|
17 |
|
18 |
from torch.nn import CrossEntropyLoss
|
19 |
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
@@ -36,7 +35,7 @@ except ImportError:
|
|
36 |
from torch import nn
|
37 |
|
38 |
SUPPORT_CUDA = torch.cuda.is_available()
|
39 |
-
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.
|
40 |
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
|
41 |
SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
|
42 |
|
@@ -77,11 +76,14 @@ We detect you have activated flash attention support, but running model computat
|
|
77 |
"""
|
78 |
|
79 |
apply_rotary_emb_func = None
|
|
|
80 |
rms_norm = None
|
|
|
81 |
flash_attn_unpadded_func = None
|
|
|
82 |
|
83 |
def _import_flash_attn():
|
84 |
-
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
|
85 |
try:
|
86 |
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
|
87 |
apply_rotary_emb_func = __apply_rotary_emb_func
|
@@ -102,20 +104,42 @@ def _import_flash_attn():
|
|
102 |
|
103 |
try:
|
104 |
import flash_attn
|
|
|
105 |
if not hasattr(flash_attn, '__version__'):
|
106 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
107 |
else:
|
108 |
if int(flash_attn.__version__.split(".")[0]) >= 2:
|
|
|
|
|
109 |
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
|
110 |
else:
|
111 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
112 |
flash_attn_unpadded_func = __flash_attn_unpadded_func
|
|
|
113 |
except ImportError:
|
114 |
logger.warn(
|
115 |
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
|
116 |
"https://github.com/Dao-AILab/flash-attention"
|
117 |
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
def quantize_cache_v(fdata, bits, qmax, qmin):
|
120 |
# b, s, head, h-dim->b, head, s, h-dim
|
121 |
qtype = torch.uint8
|
@@ -182,6 +206,11 @@ class FlashSelfAttention(torch.nn.Module):
|
|
182 |
seqlen_k = k.shape[1]
|
183 |
seqlen_out = seqlen_q
|
184 |
|
|
|
|
|
|
|
|
|
|
|
185 |
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
186 |
cu_seqlens_q = torch.arange(
|
187 |
0,
|
@@ -311,7 +340,7 @@ class QWenAttention(nn.Module):
|
|
311 |
warnings.warn("Failed to import KV cache kernels.")
|
312 |
self.cache_kernels = None
|
313 |
|
314 |
-
def _attn(self, query, key, value,
|
315 |
device = query.device
|
316 |
if self.use_cache_quantization:
|
317 |
qk, qk_scale, qk_zero = key
|
@@ -336,26 +365,13 @@ class QWenAttention(nn.Module):
|
|
336 |
size_temp = value[0].size(-1)
|
337 |
else:
|
338 |
size_temp = value.size(-1)
|
339 |
-
attn_weights = attn_weights /
|
340 |
-
|
341 |
-
size_temp ** 0.5,
|
342 |
-
dtype=attn_weights.dtype,
|
343 |
-
device=attn_weights.device,
|
344 |
-
)
|
345 |
-
if self.use_cache_quantization:
|
346 |
-
query_length, key_length = query.size(-2), key[0].size(-2)
|
347 |
-
else:
|
348 |
-
query_length, key_length = query.size(-2), key.size(-2)
|
349 |
-
causal_mask = registered_causal_mask[
|
350 |
-
:, :, key_length - query_length : key_length, :key_length
|
351 |
-
]
|
352 |
mask_value = torch.finfo(attn_weights.dtype).min
|
353 |
-
|
354 |
-
attn_weights.
|
355 |
-
|
356 |
-
|
357 |
-
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
358 |
-
)
|
359 |
|
360 |
if attention_mask is not None:
|
361 |
attn_weights = attn_weights + attention_mask
|
@@ -395,62 +411,6 @@ class QWenAttention(nn.Module):
|
|
395 |
|
396 |
return attn_output, attn_weights
|
397 |
|
398 |
-
def _upcast_and_reordered_attn(
|
399 |
-
self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
|
400 |
-
):
|
401 |
-
bsz, num_heads, q_seq_len, dk = query.size()
|
402 |
-
_, _, k_seq_len, _ = key.size()
|
403 |
-
|
404 |
-
attn_weights = torch.empty(
|
405 |
-
bsz * num_heads,
|
406 |
-
q_seq_len,
|
407 |
-
k_seq_len,
|
408 |
-
dtype=torch.float32,
|
409 |
-
device=query.device,
|
410 |
-
)
|
411 |
-
|
412 |
-
scale_factor = 1.0
|
413 |
-
if self.scale_attn_weights:
|
414 |
-
scale_factor /= float(value.size(-1)) ** 0.5
|
415 |
-
|
416 |
-
with autocast(enabled=False):
|
417 |
-
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
|
418 |
-
-1, dk, k_seq_len
|
419 |
-
)
|
420 |
-
attn_weights = torch.baddbmm(
|
421 |
-
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
|
422 |
-
)
|
423 |
-
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
424 |
-
|
425 |
-
query_length, key_length = query.size(-2), key.size(-2)
|
426 |
-
causal_mask = registered_causal_mask[
|
427 |
-
:, :, key_length - query_length : key_length, :key_length
|
428 |
-
]
|
429 |
-
mask_value = torch.finfo(attn_weights.dtype).min
|
430 |
-
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
|
431 |
-
attn_weights.device
|
432 |
-
)
|
433 |
-
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
434 |
-
|
435 |
-
if attention_mask is not None:
|
436 |
-
attn_weights = attn_weights + attention_mask
|
437 |
-
|
438 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
439 |
-
|
440 |
-
if attn_weights.dtype != torch.float32:
|
441 |
-
raise RuntimeError(
|
442 |
-
"Error with upcasting, attn_weights does not have dtype torch.float32"
|
443 |
-
)
|
444 |
-
attn_weights = attn_weights.type(value.dtype)
|
445 |
-
attn_weights = self.attn_dropout(attn_weights)
|
446 |
-
|
447 |
-
if head_mask is not None:
|
448 |
-
attn_weights = attn_weights * head_mask
|
449 |
-
|
450 |
-
attn_output = torch.matmul(attn_weights, value)
|
451 |
-
|
452 |
-
return attn_output, attn_weights
|
453 |
-
|
454 |
def _split_heads(self, tensor, num_heads, attn_head_size):
|
455 |
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
456 |
tensor = tensor.view(new_shape)
|
@@ -465,7 +425,6 @@ class QWenAttention(nn.Module):
|
|
465 |
self,
|
466 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
467 |
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
468 |
-
registered_causal_mask: Optional[torch.Tensor] = None,
|
469 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
470 |
attention_mask: Optional[torch.FloatTensor] = None,
|
471 |
head_mask: Optional[torch.FloatTensor] = None,
|
@@ -539,7 +498,8 @@ class QWenAttention(nn.Module):
|
|
539 |
else:
|
540 |
present = None
|
541 |
|
542 |
-
if self.
|
|
|
543 |
if self.use_cache_quantization:
|
544 |
seq_start = key[0].size(2) - query.size(1)
|
545 |
seq_end = key[0].size(2)
|
@@ -558,12 +518,19 @@ class QWenAttention(nn.Module):
|
|
558 |
q, k, v = query, key, value
|
559 |
attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
|
560 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
query = query.permute(0, 2, 1, 3)
|
562 |
if not self.use_cache_quantization:
|
563 |
key = key.permute(0, 2, 1, 3)
|
564 |
value = value.permute(0, 2, 1, 3)
|
565 |
if (
|
566 |
-
|
567 |
and self.use_flash_attn
|
568 |
and flash_attn_unpadded_func is not None
|
569 |
and not self.is_fp32
|
@@ -572,13 +539,12 @@ class QWenAttention(nn.Module):
|
|
572 |
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
|
573 |
|
574 |
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
575 |
-
causal_mask = registered_causal_mask[
|
576 |
-
:, :, key.size(-2) - query.size(-2): key.size(-2), :key.size(-2)
|
577 |
-
]
|
578 |
if attention_mask is not None:
|
579 |
attention_mask = attention_mask.expand(
|
580 |
-1, -1, causal_mask.size(2), -1
|
581 |
-
)
|
|
|
|
|
582 |
else:
|
583 |
attention_mask = causal_mask
|
584 |
attn_output = F.scaled_dot_product_attention(
|
@@ -587,7 +553,7 @@ class QWenAttention(nn.Module):
|
|
587 |
attn_weight = None
|
588 |
else:
|
589 |
attn_output, attn_weight = self._attn(
|
590 |
-
query, key, value,
|
591 |
)
|
592 |
context_layer = self._merge_heads(
|
593 |
attn_output, self.num_heads, self.head_dim
|
@@ -603,6 +569,8 @@ class QWenAttention(nn.Module):
|
|
603 |
and not self.is_fp32
|
604 |
):
|
605 |
raise ValueError("Cannot output attentions while using flash-attn")
|
|
|
|
|
606 |
else:
|
607 |
outputs += (attn_weight,)
|
608 |
|
@@ -628,6 +596,7 @@ class QWenMLP(nn.Module):
|
|
628 |
output = self.c_proj(intermediate_parallel)
|
629 |
return output
|
630 |
|
|
|
631 |
class QWenBlock(nn.Module):
|
632 |
def __init__(self, config):
|
633 |
super().__init__()
|
@@ -650,7 +619,6 @@ class QWenBlock(nn.Module):
|
|
650 |
self,
|
651 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
652 |
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
653 |
-
registered_causal_mask: Optional[torch.Tensor] = None,
|
654 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
655 |
attention_mask: Optional[torch.FloatTensor] = None,
|
656 |
head_mask: Optional[torch.FloatTensor] = None,
|
@@ -664,7 +632,6 @@ class QWenBlock(nn.Module):
|
|
664 |
attn_outputs = self.attn(
|
665 |
layernorm_output,
|
666 |
rotary_pos_emb_list,
|
667 |
-
registered_causal_mask=registered_causal_mask,
|
668 |
layer_past=layer_past,
|
669 |
attention_mask=attention_mask,
|
670 |
head_mask=head_mask,
|
@@ -698,6 +665,7 @@ class QWenPreTrainedModel(PreTrainedModel):
|
|
698 |
is_parallelizable = False
|
699 |
supports_gradient_checkpointing = True
|
700 |
_no_split_modules = ["QWenBlock"]
|
|
|
701 |
|
702 |
def __init__(self, *inputs, **kwargs):
|
703 |
super().__init__(*inputs, **kwargs)
|
@@ -764,21 +732,6 @@ class QWenModel(QWenPreTrainedModel):
|
|
764 |
|
765 |
self.use_flash_attn = config.use_flash_attn
|
766 |
self.is_fp32 = not (config.bf16 or config.fp16)
|
767 |
-
if (
|
768 |
-
self.use_flash_attn
|
769 |
-
and flash_attn_unpadded_func is not None
|
770 |
-
and not self.is_fp32
|
771 |
-
):
|
772 |
-
self.registered_causal_mask = None
|
773 |
-
else:
|
774 |
-
max_positions = config.max_position_embeddings
|
775 |
-
self.register_buffer(
|
776 |
-
"registered_causal_mask",
|
777 |
-
torch.tril(
|
778 |
-
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
779 |
-
).view(1, 1, max_positions, max_positions),
|
780 |
-
persistent=False,
|
781 |
-
)
|
782 |
|
783 |
self.h = nn.ModuleList(
|
784 |
[
|
@@ -950,7 +903,6 @@ class QWenModel(QWenPreTrainedModel):
|
|
950 |
create_custom_forward(block),
|
951 |
hidden_states,
|
952 |
rotary_pos_emb_list,
|
953 |
-
self.registered_causal_mask,
|
954 |
None,
|
955 |
attention_mask,
|
956 |
head_mask[i],
|
@@ -962,7 +914,6 @@ class QWenModel(QWenPreTrainedModel):
|
|
962 |
hidden_states,
|
963 |
layer_past=layer_past,
|
964 |
rotary_pos_emb_list=rotary_pos_emb_list,
|
965 |
-
registered_causal_mask=self.registered_causal_mask,
|
966 |
attention_mask=attention_mask,
|
967 |
head_mask=head_mask[i],
|
968 |
encoder_hidden_states=encoder_hidden_states,
|
@@ -1006,11 +957,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1006 |
assert (
|
1007 |
config.bf16 + config.fp16 + config.fp32 <= 1
|
1008 |
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
|
1009 |
-
logger.warn(
|
1010 |
-
"Warning: please make sure that you are using the latest codes and checkpoints, "
|
1011 |
-
"especially if you used Qwen-7B before 09.25.2023."
|
1012 |
-
"请使用最新模型和代码,尤其如果你在9月25日前已经开始使用Qwen-7B,千万注意不要使用错误代码和模型。"
|
1013 |
-
)
|
1014 |
|
1015 |
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
|
1016 |
|
@@ -1052,6 +998,12 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1052 |
if config.use_flash_attn:
|
1053 |
_import_flash_attn()
|
1054 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1055 |
self.transformer = QWenModel(config)
|
1056 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1057 |
|
@@ -1063,7 +1015,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1063 |
self.lm_head.half()
|
1064 |
self.post_init()
|
1065 |
|
1066 |
-
|
1067 |
def get_output_embeddings(self):
|
1068 |
return self.lm_head
|
1069 |
|
@@ -1073,22 +1024,13 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1073 |
def prepare_inputs_for_generation(
|
1074 |
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
1075 |
):
|
1076 |
-
token_type_ids = kwargs.get("token_type_ids", None)
|
1077 |
if past_key_values:
|
1078 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1079 |
-
if token_type_ids is not None:
|
1080 |
-
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
1081 |
-
|
1082 |
-
attention_mask = kwargs.get("attention_mask", None)
|
1083 |
-
position_ids = kwargs.get("position_ids", None)
|
1084 |
|
1085 |
-
if
|
1086 |
-
|
1087 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1088 |
-
if past_key_values:
|
1089 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1090 |
else:
|
1091 |
-
|
1092 |
|
1093 |
if inputs_embeds is not None and past_key_values is None:
|
1094 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
@@ -1099,9 +1041,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
1099 |
{
|
1100 |
"past_key_values": past_key_values,
|
1101 |
"use_cache": kwargs.get("use_cache"),
|
1102 |
-
"position_ids": position_ids,
|
1103 |
"attention_mask": attention_mask,
|
1104 |
-
"token_type_ids": token_type_ids,
|
1105 |
}
|
1106 |
)
|
1107 |
return model_inputs
|
@@ -1372,8 +1312,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
1372 |
self._ntk_alpha_cached = 1.0
|
1373 |
self._ntk_alpha_cached_list = [1.0]
|
1374 |
|
1375 |
-
def update_rotary_pos_emb_cache(self,
|
1376 |
-
seqlen = max_seq_len + offset
|
1377 |
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
1378 |
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
1379 |
self.inv_freq = 1.0 / (
|
@@ -1396,10 +1335,10 @@ class RotaryEmbedding(torch.nn.Module):
|
|
1396 |
cos, sin = emb.cos(), emb.sin()
|
1397 |
self._rotary_pos_emb_cache = [cos, sin]
|
1398 |
|
1399 |
-
def forward(self, max_seq_len,
|
1400 |
-
self.update_rotary_pos_emb_cache(max_seq_len,
|
1401 |
cos, sin = self._rotary_pos_emb_cache
|
1402 |
-
return [cos[:,
|
1403 |
|
1404 |
|
1405 |
def _rotate_half(x):
|
@@ -1411,21 +1350,30 @@ def _rotate_half(x):
|
|
1411 |
|
1412 |
|
1413 |
def apply_rotary_pos_emb(t, freqs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1414 |
cos, sin = freqs
|
1415 |
-
|
1416 |
-
|
1417 |
-
|
1418 |
-
|
1419 |
-
|
1420 |
-
|
|
|
|
|
|
|
|
|
1421 |
else:
|
1422 |
-
|
1423 |
-
cos
|
1424 |
-
|
1425 |
-
t_ = t_.float()
|
1426 |
-
t_pass_ = t_pass_.float()
|
1427 |
-
t_ = (t_ * cos) + (_rotate_half(t_) * sin)
|
1428 |
-
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
1429 |
|
1430 |
|
1431 |
class RMSNorm(torch.nn.Module):
|
@@ -1438,7 +1386,9 @@ class RMSNorm(torch.nn.Module):
|
|
1438 |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
1439 |
|
1440 |
def forward(self, x):
|
1441 |
-
if
|
|
|
|
|
1442 |
return rms_norm(x, self.weight, self.eps)
|
1443 |
else:
|
1444 |
output = self._norm(x.float()).type_as(x)
|
|
|
13 |
import torch.nn.functional as F
|
14 |
import torch.utils.checkpoint
|
15 |
import warnings
|
|
|
16 |
|
17 |
from torch.nn import CrossEntropyLoss
|
18 |
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
|
|
35 |
from torch import nn
|
36 |
|
37 |
SUPPORT_CUDA = torch.cuda.is_available()
|
38 |
+
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 8
|
39 |
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
|
40 |
SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
|
41 |
|
|
|
76 |
"""
|
77 |
|
78 |
apply_rotary_emb_func = None
|
79 |
+
apply_rotary_emb_func_triton = None
|
80 |
rms_norm = None
|
81 |
+
rms_norm_triton = None
|
82 |
flash_attn_unpadded_func = None
|
83 |
+
flash_attn_func = None
|
84 |
|
85 |
def _import_flash_attn():
|
86 |
+
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
|
87 |
try:
|
88 |
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
|
89 |
apply_rotary_emb_func = __apply_rotary_emb_func
|
|
|
104 |
|
105 |
try:
|
106 |
import flash_attn
|
107 |
+
_flash_attn_func = None
|
108 |
if not hasattr(flash_attn, '__version__'):
|
109 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
110 |
else:
|
111 |
if int(flash_attn.__version__.split(".")[0]) >= 2:
|
112 |
+
if int(flash_attn.__version__.split(".")[1]) >= 1:
|
113 |
+
from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
|
114 |
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
|
115 |
else:
|
116 |
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
|
117 |
flash_attn_unpadded_func = __flash_attn_unpadded_func
|
118 |
+
flash_attn_func = _flash_attn_func
|
119 |
except ImportError:
|
120 |
logger.warn(
|
121 |
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
|
122 |
"https://github.com/Dao-AILab/flash-attention"
|
123 |
)
|
124 |
|
125 |
+
def _import_triton():
|
126 |
+
global apply_rotary_emb_func_triton, rms_norm_triton
|
127 |
+
try:
|
128 |
+
from .triton_kernels import apply_rotary_emb as __apply_rotary_emb, rms_norm as __rms_norm
|
129 |
+
if apply_rotary_emb_func is not None:
|
130 |
+
logger.warn(
|
131 |
+
"Using Triton rotary kernel instead of flash_attn for inference."
|
132 |
+
)
|
133 |
+
apply_rotary_emb_func_triton = __apply_rotary_emb
|
134 |
+
if rms_norm is not None:
|
135 |
+
logger.warn(
|
136 |
+
"Using Triton rms_norm kernel instead of flash_attn for inference."
|
137 |
+
)
|
138 |
+
rms_norm_triton = __rms_norm
|
139 |
+
except ImportError:
|
140 |
+
logger.warn("Warning: Failed to import Triton kernels.")
|
141 |
+
return
|
142 |
+
|
143 |
def quantize_cache_v(fdata, bits, qmax, qmin):
|
144 |
# b, s, head, h-dim->b, head, s, h-dim
|
145 |
qtype = torch.uint8
|
|
|
206 |
seqlen_k = k.shape[1]
|
207 |
seqlen_out = seqlen_q
|
208 |
|
209 |
+
if flash_attn_func is not None and batch_size == 1:
|
210 |
+
dropout_p = self.dropout_p if self.training else 0
|
211 |
+
output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
|
212 |
+
return output
|
213 |
+
|
214 |
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
215 |
cu_seqlens_q = torch.arange(
|
216 |
0,
|
|
|
340 |
warnings.warn("Failed to import KV cache kernels.")
|
341 |
self.cache_kernels = None
|
342 |
|
343 |
+
def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
|
344 |
device = query.device
|
345 |
if self.use_cache_quantization:
|
346 |
qk, qk_scale, qk_zero = key
|
|
|
365 |
size_temp = value[0].size(-1)
|
366 |
else:
|
367 |
size_temp = value.size(-1)
|
368 |
+
attn_weights = attn_weights / (size_temp ** 0.5)
|
369 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
mask_value = torch.finfo(attn_weights.dtype).min
|
371 |
+
if causal_mask is not None:
|
372 |
+
attn_weights = torch.where(
|
373 |
+
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
374 |
+
)
|
|
|
|
|
375 |
|
376 |
if attention_mask is not None:
|
377 |
attn_weights = attn_weights + attention_mask
|
|
|
411 |
|
412 |
return attn_output, attn_weights
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
def _split_heads(self, tensor, num_heads, attn_head_size):
|
415 |
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
416 |
tensor = tensor.view(new_shape)
|
|
|
425 |
self,
|
426 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
427 |
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
|
|
428 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
429 |
attention_mask: Optional[torch.FloatTensor] = None,
|
430 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
498 |
else:
|
499 |
present = None
|
500 |
|
501 |
+
key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
|
502 |
+
if key_size > self.seq_length and self.use_logn_attn and not self.training:
|
503 |
if self.use_cache_quantization:
|
504 |
seq_start = key[0].size(2) - query.size(1)
|
505 |
seq_end = key[0].size(2)
|
|
|
518 |
q, k, v = query, key, value
|
519 |
attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
|
520 |
else:
|
521 |
+
key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
|
522 |
+
if query.size(1) == key_size:
|
523 |
+
causal_mask = torch.tril(
|
524 |
+
torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
|
525 |
+
).view(1, 1, key_size, key_size)
|
526 |
+
else:
|
527 |
+
causal_mask = None
|
528 |
query = query.permute(0, 2, 1, 3)
|
529 |
if not self.use_cache_quantization:
|
530 |
key = key.permute(0, 2, 1, 3)
|
531 |
value = value.permute(0, 2, 1, 3)
|
532 |
if (
|
533 |
+
causal_mask is None
|
534 |
and self.use_flash_attn
|
535 |
and flash_attn_unpadded_func is not None
|
536 |
and not self.is_fp32
|
|
|
539 |
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
|
540 |
|
541 |
if not self.use_cache_quantization and SUPPORT_TORCH2:
|
|
|
|
|
|
|
542 |
if attention_mask is not None:
|
543 |
attention_mask = attention_mask.expand(
|
544 |
-1, -1, causal_mask.size(2), -1
|
545 |
+
)
|
546 |
+
if causal_mask is not None:
|
547 |
+
attention_mask.masked_fill_(~causal_mask, torch.finfo(query.dtype).min)
|
548 |
else:
|
549 |
attention_mask = causal_mask
|
550 |
attn_output = F.scaled_dot_product_attention(
|
|
|
553 |
attn_weight = None
|
554 |
else:
|
555 |
attn_output, attn_weight = self._attn(
|
556 |
+
query, key, value, causal_mask, attention_mask, head_mask
|
557 |
)
|
558 |
context_layer = self._merge_heads(
|
559 |
attn_output, self.num_heads, self.head_dim
|
|
|
569 |
and not self.is_fp32
|
570 |
):
|
571 |
raise ValueError("Cannot output attentions while using flash-attn")
|
572 |
+
elif not self.use_cache_quantization and SUPPORT_TORCH2:
|
573 |
+
raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
|
574 |
else:
|
575 |
outputs += (attn_weight,)
|
576 |
|
|
|
596 |
output = self.c_proj(intermediate_parallel)
|
597 |
return output
|
598 |
|
599 |
+
|
600 |
class QWenBlock(nn.Module):
|
601 |
def __init__(self, config):
|
602 |
super().__init__()
|
|
|
619 |
self,
|
620 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
621 |
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
|
|
622 |
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
623 |
attention_mask: Optional[torch.FloatTensor] = None,
|
624 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
632 |
attn_outputs = self.attn(
|
633 |
layernorm_output,
|
634 |
rotary_pos_emb_list,
|
|
|
635 |
layer_past=layer_past,
|
636 |
attention_mask=attention_mask,
|
637 |
head_mask=head_mask,
|
|
|
665 |
is_parallelizable = False
|
666 |
supports_gradient_checkpointing = True
|
667 |
_no_split_modules = ["QWenBlock"]
|
668 |
+
_skip_keys_device_placement = "past_key_values"
|
669 |
|
670 |
def __init__(self, *inputs, **kwargs):
|
671 |
super().__init__(*inputs, **kwargs)
|
|
|
732 |
|
733 |
self.use_flash_attn = config.use_flash_attn
|
734 |
self.is_fp32 = not (config.bf16 or config.fp16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
735 |
|
736 |
self.h = nn.ModuleList(
|
737 |
[
|
|
|
903 |
create_custom_forward(block),
|
904 |
hidden_states,
|
905 |
rotary_pos_emb_list,
|
|
|
906 |
None,
|
907 |
attention_mask,
|
908 |
head_mask[i],
|
|
|
914 |
hidden_states,
|
915 |
layer_past=layer_past,
|
916 |
rotary_pos_emb_list=rotary_pos_emb_list,
|
|
|
917 |
attention_mask=attention_mask,
|
918 |
head_mask=head_mask[i],
|
919 |
encoder_hidden_states=encoder_hidden_states,
|
|
|
957 |
assert (
|
958 |
config.bf16 + config.fp16 + config.fp32 <= 1
|
959 |
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
|
|
|
|
|
|
|
|
|
|
|
960 |
|
961 |
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
|
962 |
|
|
|
998 |
if config.use_flash_attn:
|
999 |
_import_flash_attn()
|
1000 |
|
1001 |
+
if config.use_triton == "auto":
|
1002 |
+
logger.warn("Try importing Triton kernels for faster inference...")
|
1003 |
+
config.use_triton = SUPPORT_TORCH2
|
1004 |
+
if config.use_triton:
|
1005 |
+
_import_triton()
|
1006 |
+
|
1007 |
self.transformer = QWenModel(config)
|
1008 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1009 |
|
|
|
1015 |
self.lm_head.half()
|
1016 |
self.post_init()
|
1017 |
|
|
|
1018 |
def get_output_embeddings(self):
|
1019 |
return self.lm_head
|
1020 |
|
|
|
1024 |
def prepare_inputs_for_generation(
|
1025 |
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
1026 |
):
|
|
|
1027 |
if past_key_values:
|
1028 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
|
|
|
|
|
|
|
|
1029 |
|
1030 |
+
if input_ids.size(0) == 1:
|
1031 |
+
attention_mask = None
|
|
|
|
|
|
|
1032 |
else:
|
1033 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1034 |
|
1035 |
if inputs_embeds is not None and past_key_values is None:
|
1036 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
|
1041 |
{
|
1042 |
"past_key_values": past_key_values,
|
1043 |
"use_cache": kwargs.get("use_cache"),
|
|
|
1044 |
"attention_mask": attention_mask,
|
|
|
1045 |
}
|
1046 |
)
|
1047 |
return model_inputs
|
|
|
1312 |
self._ntk_alpha_cached = 1.0
|
1313 |
self._ntk_alpha_cached_list = [1.0]
|
1314 |
|
1315 |
+
def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
|
|
|
1316 |
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
1317 |
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
1318 |
self.inv_freq = 1.0 / (
|
|
|
1335 |
cos, sin = emb.cos(), emb.sin()
|
1336 |
self._rotary_pos_emb_cache = [cos, sin]
|
1337 |
|
1338 |
+
def forward(self, max_seq_len, ntk_alpha=1.0):
|
1339 |
+
self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
|
1340 |
cos, sin = self._rotary_pos_emb_cache
|
1341 |
+
return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
|
1342 |
|
1343 |
|
1344 |
def _rotate_half(x):
|
|
|
1350 |
|
1351 |
|
1352 |
def apply_rotary_pos_emb(t, freqs):
|
1353 |
+
""" Apply rotary embedding to the first rotary_dim of the iput
|
1354 |
+
|
1355 |
+
Arguments:
|
1356 |
+
t (tensor(batch_size, seq_len, n_head, head_dim)):
|
1357 |
+
the input embedding/hidden states
|
1358 |
+
freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
|
1359 |
+
the cached cos/sin position embeddings
|
1360 |
+
"""
|
1361 |
+
rot_dim = freqs[0].shape[-1]
|
1362 |
cos, sin = freqs
|
1363 |
+
t_float = t.float()
|
1364 |
+
if apply_rotary_emb_func_triton is not None and t.is_cuda and (not t.requires_grad):
|
1365 |
+
return apply_rotary_emb_func_triton(t, cos, sin)
|
1366 |
+
elif apply_rotary_emb_func is not None and t.is_cuda:
|
1367 |
+
# apply_rotary_emb in flash_attn requires cos/sin to be of
|
1368 |
+
# shape (seqlen, rotary_dim / 2) and apply rotary embedding
|
1369 |
+
# to the first rotary_dim of the input
|
1370 |
+
cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
1371 |
+
sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
|
1372 |
+
return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
|
1373 |
else:
|
1374 |
+
t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
|
1375 |
+
t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
|
1376 |
+
return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
|
|
|
|
|
|
|
|
|
1377 |
|
1378 |
|
1379 |
class RMSNorm(torch.nn.Module):
|
|
|
1386 |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
1387 |
|
1388 |
def forward(self, x):
|
1389 |
+
if rms_norm_triton is not None and x.is_cuda and (not x.requires_grad):
|
1390 |
+
return rms_norm_triton(x, self.weight, self.eps)
|
1391 |
+
elif rms_norm is not None and x.is_cuda:
|
1392 |
return rms_norm(x, self.weight, self.eps)
|
1393 |
else:
|
1394 |
output = self._norm(x.float()).type_as(x)
|
tokenizer_config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"model_max_length":
|
3 |
"tokenizer_class": "QWenTokenizer",
|
4 |
"auto_map": {
|
5 |
"AutoTokenizer": [
|
|
|
1 |
{
|
2 |
+
"model_max_length": 32768,
|
3 |
"tokenizer_class": "QWenTokenizer",
|
4 |
"auto_map": {
|
5 |
"AutoTokenizer": [
|
triton_kernels.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, Hashable, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import triton
|
5 |
+
import triton.language as tl
|
6 |
+
from triton.compiler import CompiledKernel
|
7 |
+
from triton.runtime import JITFunction
|
8 |
+
|
9 |
+
try:
|
10 |
+
import triton.language.math as tlmath # Triton 2.1
|
11 |
+
except ImportError:
|
12 |
+
import triton.language.libdevice as tlmath # Triton 2.0
|
13 |
+
|
14 |
+
|
15 |
+
class TritonKernel:
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
kernel_fn: JITFunction,
|
19 |
+
grid_fn: Callable[[Tuple[Any, ...]], Tuple[int, int, int]],
|
20 |
+
) -> None:
|
21 |
+
self.kernel_fn_ = kernel_fn
|
22 |
+
self.grid_fn_ = grid_fn
|
23 |
+
self.kernel_cache_: Dict[Hashable, CompiledKernel] = {}
|
24 |
+
|
25 |
+
def run(self, *args, **kwargs):
|
26 |
+
# Set current device
|
27 |
+
input_device = args[0].device
|
28 |
+
prev_dev_idx, cur_dev_idx = -1, torch.cuda.current_device()
|
29 |
+
if input_device.index != cur_dev_idx:
|
30 |
+
prev_dev_idx = cur_dev_idx
|
31 |
+
torch.cuda.set_device(input_device.index)
|
32 |
+
|
33 |
+
# Compute grid
|
34 |
+
grid = self.grid_fn_(args)
|
35 |
+
|
36 |
+
# Use cached kernel if possible
|
37 |
+
kernel_key = (input_device,) + tuple(kwargs.items())
|
38 |
+
if kernel_key in self.kernel_cache_:
|
39 |
+
kernel = self.kernel_cache_[kernel_key]
|
40 |
+
kernel[grid](*args)
|
41 |
+
else:
|
42 |
+
# Compile and store new kernel
|
43 |
+
kernel = self.kernel_fn_[grid](*args, **kwargs)
|
44 |
+
self.kernel_cache_[kernel_key] = kernel
|
45 |
+
|
46 |
+
# Restore previous device
|
47 |
+
torch.cuda.set_device(prev_dev_idx)
|
48 |
+
|
49 |
+
|
50 |
+
@triton.jit
|
51 |
+
def _apply_rope_fwd_kernel(X, Cos, Sin, Y, HEAD_DIM: tl.constexpr):
|
52 |
+
batch_idx, tok_idx, head_idx = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
53 |
+
seq_len, num_heads = tl.num_programs(1), tl.num_programs(2)
|
54 |
+
block_idx = tl.arange(0, HEAD_DIM)
|
55 |
+
x_base_idx = ((batch_idx * seq_len + tok_idx) * num_heads * 3 + head_idx) * HEAD_DIM
|
56 |
+
x = tl.load(X + x_base_idx + block_idx)
|
57 |
+
freq_idx = tok_idx * HEAD_DIM + block_idx
|
58 |
+
cos = tl.load(Cos + freq_idx)
|
59 |
+
rot_idx = (HEAD_DIM // 2 + block_idx) % HEAD_DIM
|
60 |
+
x_rot = tl.load(X + x_base_idx + rot_idx)
|
61 |
+
x_rot = tl.where(block_idx >= HEAD_DIM // 2, x_rot, -x_rot)
|
62 |
+
sin = tl.load(Sin + freq_idx)
|
63 |
+
y_idx = (
|
64 |
+
(batch_idx * seq_len + tok_idx) * num_heads + head_idx
|
65 |
+
) * HEAD_DIM + block_idx
|
66 |
+
y = x * cos + x_rot * sin
|
67 |
+
tl.store(Y + y_idx, y.to(Y.dtype.element_ty))
|
68 |
+
|
69 |
+
|
70 |
+
apply_rope_fwd_kernel = TritonKernel(
|
71 |
+
_apply_rope_fwd_kernel, lambda args: tuple(args[0].shape[:3])
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
76 |
+
y = torch.empty(x.shape, dtype=x.dtype, device=x.device)
|
77 |
+
apply_rope_fwd_kernel.run(x, cos, sin, y, HEAD_DIM=x.size(-1))
|
78 |
+
return y
|
79 |
+
|
80 |
+
|
81 |
+
@triton.jit
|
82 |
+
def _rms_norm_fwd_kernel(X, W, Y, eps, hidden_dim, BLOCK_SIZE: tl.constexpr):
|
83 |
+
tok_idx = tl.program_id(0)
|
84 |
+
|
85 |
+
mean_sq = tl.zeros([BLOCK_SIZE], tl.float32)
|
86 |
+
for offset in range(0, hidden_dim, BLOCK_SIZE):
|
87 |
+
dim_idx = offset + tl.arange(0, BLOCK_SIZE)
|
88 |
+
x = tl.load(
|
89 |
+
X + tok_idx * hidden_dim + dim_idx, mask=dim_idx < hidden_dim, other=0
|
90 |
+
).to(tl.float32)
|
91 |
+
mean_sq += x * x / hidden_dim
|
92 |
+
rrms = tlmath.rsqrt(tl.sum(mean_sq, 0) + eps)
|
93 |
+
|
94 |
+
for offset in range(0, hidden_dim, BLOCK_SIZE):
|
95 |
+
dim_idx = offset + tl.arange(0, BLOCK_SIZE)
|
96 |
+
dim_mask = dim_idx < hidden_dim
|
97 |
+
hidden_idx = tok_idx * hidden_dim + dim_idx
|
98 |
+
x = tl.load(X + hidden_idx, mask=dim_mask, other=0)
|
99 |
+
w = tl.load(W + dim_idx, mask=dim_mask, other=0)
|
100 |
+
y = x * rrms * w
|
101 |
+
tl.store(Y + hidden_idx, y.to(Y.dtype.element_ty), mask=dim_mask)
|
102 |
+
|
103 |
+
|
104 |
+
rms_norm_fwd_kernel = TritonKernel(
|
105 |
+
_rms_norm_fwd_kernel, lambda args: (args[0].shape[:-1].numel(), 1, 1)
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def rms_norm(x: torch.Tensor, weight: torch.Tensor, eps: float):
|
110 |
+
y = torch.empty_like(x)
|
111 |
+
hidden_dim = x.size(-1)
|
112 |
+
rms_norm_fwd_kernel.run(
|
113 |
+
x, weight, y, eps, hidden_dim, BLOCK_SIZE=triton.next_power_of_2(hidden_dim)
|
114 |
+
)
|
115 |
+
return y
|