Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: mistralai/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

datasets:
  - path: /home/austin/disk1/summaries_fixed.jsonl
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora_outputs

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: summarization-qlora
wandb_entity:
wandb_watch:
wandb_name: actual_run1
wandb_log_model:
 
 #unsloth_cross_entropy_loss: true

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention: false
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 25
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed: ./deepspeed_configs/zero2.json
weight_decay: 0.0
fsdp:
  #  - full_shard
  #  - auto_wrap
fsdp_config:
  #  fsdp_limit_all_gathers: true
  #  fsdp_activation_checkpointing: true
  #  fsdp_sync_module_states: true
  #  fsdp_offload_params: false
  #  fsdp_use_orig_params: false
  #  fsdp_cpu_ram_efficient_loading: false
  #  fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
  #  fsdp_state_dict_type: FULL_STATE_DICT
  #  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
special_tokens:
  pad_token: </s>

qlora_outputs

This model is a fine-tuned version of mistralai/Mistral-Nemo-Base-2407 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.0177 0.0014 1 1.6514
1.6259 0.2507 177 1.2032
1.4232 0.5014 354 1.1897
1.6835 0.7521 531 1.1985
1.6514 1.0028 708 1.1874
1.4538 1.2365 885 1.2166
1.2421 1.4873 1062 1.2224
1.2844 1.7380 1239 1.2330
1.4152 1.9887 1416 1.2345
1.1668 2.2252 1593 1.3476
1.1249 2.4759 1770 1.3608
0.921 2.7266 1947 1.3793
0.7824 2.9773 2124 1.3906
1.1759 3.2040 2301 1.5438
0.6625 3.4547 2478 1.5644
0.8959 3.7054 2655 1.5617

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for PygTesting/sum_qlora_4pochs

Adapter
(7)
this model