File size: 24,884 Bytes
f74b0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import math
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    logging,
)
from typing import List, Optional, Tuple, Union

from .configuration_gpt_refact import GPTRefactConfig

logger = logging.get_logger(__name__)


@torch.jit.script
def upcast_masked_softmax(
        x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, softmax_dtype: torch.dtype
):
    input_dtype = x.dtype
    x = x.to(softmax_dtype)
    x = torch.where(mask, x, mask_value)
    x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
    return x


@torch.jit.script
def upcast_softmax(x: torch.Tensor, softmax_dtype: torch.dtype):
    input_dtype = x.dtype
    x = x.to(softmax_dtype)
    x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
    return x


@torch.jit.script
def _get_slopes(attn_heads: int, dev: torch.device) -> torch.Tensor:
    """
    ## Get head-specific slope $m$ for each head
    * `n_heads` is the number of heads in the attention layer $n$
    The slope for first head is
    $$\frac{1}{2^{\frac{8}{n}}} = 2^{-\frac{8}{n}}$$
    The slopes for the rest of the heads are in a geometric series with a ratio same as above.
    For instance when the number of heads is $8$ the slopes are
    $$\frac{1}{2^1}, \frac{1}{2^2}, \dots, \frac{1}{2^8}$$
    """

    # Get the closest power of 2 to `n_heads`.
    # If `n_heads` is not a power of 2, then we first calculate slopes to the closest (smaller) power of 2,
    # and then add the remaining slopes.
    n = 2 ** math.floor(math.log(attn_heads, 2))
    # $2^{-\frac{8}{n}}$
    m_0 = 2.0 ** (-8.0 / n)
    # $2^{-1\frac{8}{n}}, 2^{-2 \frac{8}{n}}, 2^{-3 \frac{8}{n}}, \dots$
    m = torch.pow(m_0, torch.arange(1, 1 + n, device=dev))

    # If `n_heads` is not a power of 2, then we add the remaining slopes.
    # We calculate the remaining slopes for $n * 2$ (avoiding slopes added previously).
    # And pick the slopes upto `n_heads`.
    if n < attn_heads:
        # $2^{-\frac{8}{2n}}$
        m_hat_0 = 2.0 ** (-4.0 / n)
        # $2^{-1\frac{8}{2n}}, 2^{-3 \frac{8}{2n}}, 2^{-5 \frac{8}{2n}}, \dots$
        # Note that we take steps by $2$ to avoid slopes added previously.
        m_hat = torch.pow(m_hat_0, torch.arange(1, 1 + 2 * (attn_heads - n), 2, device=dev))
        # Concatenate the slopes with the remaining slopes.
        m = torch.cat([m, m_hat])
    return m

@torch.jit.script
def get_alibi_biases(
        B: int,
        T: int,
        attn_heads: int,
        dev: torch.device,
        dtype: torch.dtype) -> torch.Tensor:
    """
    ## Calculate the attention biases matrix
    * `n_heads` is the number of heads in the attention layer
    * `mask` is the attention mask of shape `[seq_len_q, seq_len_k]`
    This returns a matrix of shape `[seq_len_q, seq_len_k, n_heads, ]` with ALiBi attention biases.
    """

    # Get slopes $m$ for each head
    mask = torch.ones((T, T), device=dev, dtype=torch.bool)

    m = _get_slopes(attn_heads, dev).to(dtype)

    # Calculate distances $[0, 1, \dots, N]$
    # Here we calculate the distances using the mask.
    #
    # Since it's causal mask we can just use $[0, 1, \dots, N]$ too.
    # `distance = torch.arange(mask.shape[1], dtype=torch.long, device=mask.device)[None, :]`
    distance = mask.cumsum(dim=-1).to(dtype)

    # Multiply them pair-wise to get the AliBi bias matrix
    biases = distance[:, :, None] * m[None, None, :]
    biases = biases.permute(2, 0, 1)[None, :, :T, :T]
    return biases.contiguous()


class Attention(nn.Module):

    def __init__(self, config, layer_idx=None):
        super().__init__()
        self.mask_value = None

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        self.kv_attn_heads = 1

        self.scale_factor = self.head_dim ** -0.5

        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        self.layer_idx = layer_idx
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
        self.scale_attention_softmax_in_fp32 = (
                config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
        )
        self.attention_bias_in_fp32 = config.attention_bias_in_fp32

        self.q = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.kv = nn.Linear(self.embed_dim, self.head_dim * 2, bias=False)
        self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)

    def _get_mask_value(self, device, dtype):
        # torch.where expects a tensor. We use a cache to avoid recreating it every time.
        if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
            self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
        return self.mask_value

    def _attn(self, query, key, value, attention_mask=None, alibi=None):
        dtype = query.dtype
        softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
        mask_value = self._get_mask_value(query.device, softmax_dtype)
        upcast = dtype != softmax_dtype

        query_shape = query.shape
        batch_size = query_shape[0]
        key_length = key.size(-1)

        # (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
        # -> (batch_size, query_length, num_heads, key_length)
        query_length = query_shape[1]
        attn_shape = (batch_size, query_length, self.num_heads, key_length)
        attn_view = (batch_size, query_length * self.num_heads, key_length)
        # No copy needed for MQA 2, or when layer_past is provided.
        query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)

        alibi = alibi.transpose(2, 1).reshape(alibi.shape[0], -1, alibi.shape[-1])
        initial_dtype = query.dtype
        new_dtype = torch.float32 if self.attention_bias_in_fp32 else initial_dtype
        attn_weights = alibi.baddbmm(
            batch1=query.to(new_dtype),
            batch2=key.to(new_dtype),
            beta=1,
            alpha=self.scale_factor
        ).view(attn_shape).to(initial_dtype)

        if upcast:
            # Use a fused kernel to prevent a large overhead from casting and scaling.
            # Sub-optimal when the key length is not a multiple of 8.
            if attention_mask is None:
                attn_weights = upcast_softmax(attn_weights, softmax_dtype)
            else:
                attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, softmax_dtype)
        else:
            if attention_mask is not None:
                # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
                attn_weights = torch.where(attention_mask, attn_weights, mask_value)
            attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)

        attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)

        return attn_output, attn_weights

    def forward(
            self,
            hidden_states: torch.Tensor,
            layer_past: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            alibi: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = False,
            output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor, Optional[torch.Tensor]],
        Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
    ]:
        query = self.q(hidden_states)
        kv = self.kv(hidden_states)
        key, value = kv.split(self.head_dim, dim=-1)

        if layer_past is not None:
            past_key, past_value = layer_past
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, alibi)
        attn_output = self.c_proj(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            attn_weights = attn_weights.transpose(1, 2)
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class MLP(nn.Module):

    def __init__(self, intermediate_size, config, multiple_of: int = 256):
        super().__init__()
        embed_dim = config.hidden_size
        hidden_dim = intermediate_size
        hidden_dim = int(2 * hidden_dim / 3)
        self.hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        self.gate_up_proj = nn.Linear(embed_dim, self.hidden_dim * 2, bias=False)
        self.c_proj = nn.Linear(self.hidden_dim, embed_dim, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        up_proj = self.gate_up_proj(x)
        x1, x2 = torch.split(up_proj, self.hidden_dim, dim=-1)
        x = self.c_proj(F.silu(x1) * x2)
        return x


class LayerNormNoBias(nn.Module):

    def __init__(self, shape: int, eps: float = 1e-5):
        super().__init__()
        self.shape = (shape,)
        self.eps = eps
        self.weight = nn.Parameter(torch.empty(self.shape))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return F.layer_norm(x, self.shape, self.weight, None, self.eps)


class GPTRefactBlock(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        hidden_size = config.hidden_size
        self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

        self.ln_1 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = Attention(config, layer_idx=layer_idx)
        self.ln_2 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = MLP(self.inner_dim, config)

    def forward(
            self,
            hidden_states: Optional[Tuple[torch.Tensor]],
            layer_past: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            alibi: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = False,
            output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
    ]:
        hidden_states_norm = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states_norm,
            layer_past=layer_past,
            attention_mask=attention_mask,
            alibi=alibi,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]
        # residual connection
        mix = attn_output + hidden_states

        norm_mix = self.ln_2(mix)
        feed_forward_hidden_states = self.mlp(norm_mix)
        # residual connection
        hidden_states = mix + feed_forward_hidden_states

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions, cross_attentions)


class GPTRefactPreTrainedModel(PreTrainedModel):

    config_class = GPTRefactConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["GPTRefactBlock"]
    _skip_keys_device_placement = "past_key_values"

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        if isinstance(module, (MLP, Attention)):
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            module.c_proj.weight.data.normal_(
                mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
            )
            module.c_proj._is_hf_initialized = True
        elif isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, LayerNormNoBias):
            module.weight.data.fill_(1.0)


class GPTRefactModel(GPTRefactPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.multi_query = config.multi_query
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)

        self.h = nn.ModuleList([GPTRefactBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])

        self.max_positions = config.max_position_embeddings
        self.attention_bias_in_fp32 = config.attention_bias_in_fp32
        self.register_buffer(
            "bias", torch.tril(torch.ones((self.max_positions, self.max_positions), dtype=torch.bool)),
            persistent=False
        )

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.wte

    def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            past_key_values: Optional[List[torch.Tensor]] = None,
            attention_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if batch_size <= 0:
            raise ValueError("batch_size has to be defined and > 0")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)

        query_length = input_shape[-1]
        seq_length_with_past = past_length + query_length

        # Self-attention mask.
        key_length = past_length + query_length
        self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
        if attention_mask is not None:
            self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
                dtype=torch.bool, device=self_attention_mask.device
            )

        # MQA models: (batch_size, query_length, n_heads, key_length)
        attention_mask = self_attention_mask.unsqueeze(2)

        hidden_states = self.wte(input_ids) if inputs_embeds is None else inputs_embeds

        alibi_dtype = torch.float32 if self.attention_bias_in_fp32 else self.wte.weight.dtype
        alibi = get_alibi_biases(hidden_states.shape[0], seq_length_with_past,
                                 self.num_heads, device, alibi_dtype)[:, :, -query_length:, :]

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = [] if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    alibi
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    alibi=alibi,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache:
                presents.append(outputs[1])

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class GPTRefactForCausalLM(GPTRefactPreTrainedModel):

    _tied_weights_keys = ["lm_head.weight", "ln_f.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPTRefactModel(config)
        self.ln_f = LayerNormNoBias(self.transformer.embed_dim, eps=config.layer_norm_epsilon)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()
        
        # gradient checkpointing support for lower versions of transformers
        import transformers
        from packaging import version

        def _set_gradient_checkpointing(module, value=False):
            if isinstance(module, GPTRefactModel):
                module.gradient_checkpointing = value

        v = version.parse(transformers.__version__)
        if v.major <= 4 and v.minor < 35:
            self._set_gradient_checkpointing = _set_gradient_checkpointing

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            if past_key_values is not None:
                model_inputs = {"input_ids": input_ids[..., -1:]}
            else:
                model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
            }
        )
        return model_inputs

    def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
            attention_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        x = self.ln_f(hidden_states)
        lm_logits = self.lm_head(x)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    @staticmethod
    def _reorder_cache(
            past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)