File size: 11,153 Bytes
d08a2bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Phi-3 model configuration"""


from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
    "microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
}


class Phi3Config(PretrainedConfig):
    r"""

    This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3

    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the

    defaults will yield a similar configuration to that of the

    [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).



    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the

    documentation from [`PretrainedConfig`] for more information.



    Args:

        vocab_size (`int`, *optional*, defaults to 32064):

            Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the

            `inputs_ids` passed when calling [`Phi3Model`].

        hidden_size (`int`, *optional*, defaults to 3072):

            Dimension of the hidden representations.

        intermediate_size (`int`, *optional*, defaults to 8192):

            Dimension of the MLP representations.

        num_hidden_layers (`int`, *optional*, defaults to 32):

            Number of hidden layers in the Transformer decoder.

        num_attention_heads (`int`, *optional*, defaults to 32):

            Number of attention heads for each attention layer in the Transformer decoder.

        num_key_value_heads (`int`, *optional*):

            This is the number of key_value heads that should be used to implement Grouped Query Attention. If

            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if

            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When

            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed

            by meanpooling all the original heads within that group. For more details checkout [this

            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to

            `num_attention_heads`.

        resid_pdrop (`float`, *optional*, defaults to 0.0):

            Dropout probability for mlp outputs.

        embd_pdrop (`int`, *optional*, defaults to 0.0):

            The dropout ratio for the embeddings.

        attention_dropout (`float`, *optional*, defaults to 0.0):

            The dropout ratio after computing the attention scores.

        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):

            The non-linear activation function (function or string) in the decoder.

        max_position_embeddings (`int`, *optional*, defaults to 4096):

            The maximum sequence length that this model might ever be used with.

        original_max_position_embeddings (`int`, *optional*, defaults to 4096):

            The maximum sequence length that this model was trained with. This is used to determine the size of the

            original RoPE embeddings when using long scaling.

        initializer_range (`float`, *optional*, defaults to 0.02):

            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

        rms_norm_eps (`float`, *optional*, defaults to 1e-05):

            The epsilon value used for the RMSNorm.

        use_cache (`bool`, *optional*, defaults to `True`):

            Whether or not the model should return the last key/values attentions (not used by all models). Only

            relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.

        tie_word_embeddings (`bool`, *optional*, defaults to `False`):

            Whether to tie weight embeddings

        rope_theta (`float`, *optional*, defaults to 10000.0):

            The base period of the RoPE embeddings.

        rope_scaling (`dict`, *optional*):

            The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must

            contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and 

            the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size 

            divided by the number of attention heads divided by 2.

        bos_token_id (`int`, *optional*, defaults to 1):

            The id of the "beginning-of-sequence" token.

        eos_token_id (`int`, *optional*, defaults to 32000):

            The id of the "end-of-sequence" token.

        pad_token_id (`int`, *optional*, defaults to 32000):

            The id of the padding token.

        sliding_window (`int`, *optional*):

            Sliding window attention window size. If `None`, no sliding window is applied.



    Example:



    ```python

    >>> from transformers import Phi3Model, Phi3Config



    >>> # Initializing a Phi-3 style configuration

    >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")



    >>> # Initializing a model from the configuration

    >>> model = Phi3Model(configuration)



    >>> # Accessing the model configuration

    >>> configuration = model.config

    ```"""

    model_type = "phi3"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(

        self,

        vocab_size=32064,

        hidden_size=3072,

        intermediate_size=8192,

        num_hidden_layers=32,

        num_attention_heads=32,

        num_key_value_heads=None,

        resid_pdrop=0.0,

        embd_pdrop=0.0,

        attention_dropout=0.0,

        hidden_act="silu",

        max_position_embeddings=4096,

        original_max_position_embeddings=4096,

        initializer_range=0.02,

        rms_norm_eps=1e-5,

        use_cache=True,

        tie_word_embeddings=False,

        rope_theta=10000.0,

        rope_scaling=None,

        bos_token_id=1,

        eos_token_id=32000,

        pad_token_id=32000,

        sliding_window=None,

        **kwargs,

    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attention_dropout = attention_dropout
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.original_max_position_embeddings = original_max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self._rope_scaling_adjustment()
        self._rope_scaling_validation()
        self.sliding_window = sliding_window

        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            pad_token_id=pad_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def _rope_scaling_adjustment(self):
        """

        Adjust the `type` of the `rope_scaling` configuration for backward compatibility.

        """
        if self.rope_scaling is None:
            return

        rope_scaling_type = self.rope_scaling.get("type", None)

        # For backward compatibility if previous version used "su" or "yarn"
        if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
            self.rope_scaling["type"] = "longrope"

    def _rope_scaling_validation(self):
        """

        Validate the `rope_scaling` configuration.

        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
            raise ValueError(
                "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
        rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
            raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
        if not (
            isinstance(rope_scaling_short_factor, list)
            and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
        ):
            raise ValueError(
                f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
            )
        if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
            raise ValueError(
                f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
            )
        if not (
            isinstance(rope_scaling_long_factor, list)
            and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
        ):
            raise ValueError(
                f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
            )
        if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
            raise ValueError(
                f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
            )