Prahas10/roof_classification

This model is a fine-tuned version of google/vit-base-patch32-384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0162
  • Validation Loss: 0.2163
  • Train Accuracy: 0.8916
  • Epoch: 24

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 4825, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.0001}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
2.5019 2.0795 0.3735 0
1.7660 1.7259 0.4458 1
1.0922 1.0990 0.7590 2
0.6402 0.8232 0.8193 3
0.4725 0.6107 0.8675 4
0.2674 0.4986 0.9157 5
0.1794 0.5000 0.9157 6
0.2579 0.7721 0.7349 7
0.1269 0.3304 0.8675 8
0.0970 0.2980 0.8795 9
0.1181 0.4988 0.8193 10
0.1241 0.2899 0.8795 11
0.2311 0.4113 0.8795 12
0.0753 0.2964 0.9157 13
0.0637 0.4096 0.8675 14
0.0540 0.3032 0.9036 15
0.0334 0.2694 0.9277 16
0.0212 0.1793 0.9639 17
0.0241 0.3772 0.8554 18
0.0471 0.5727 0.8675 19
0.0652 0.3167 0.8916 20
0.0281 0.2690 0.9036 21
0.0478 0.2169 0.9277 22
0.0193 0.2091 0.9880 23
0.0162 0.2163 0.8916 24

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Prahas10/roof_classification

Finetuned
(13)
this model