File size: 2,249 Bytes
caab2a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: OpenPipe/mistral-ft-optimized-1218
tags:
- generated_from_trainer
model-index:
- name: models/loras/OpenPipe/ft-development-0b0f52d6-bc53-4443-bbad-4a6103c95501-pii-7b-optimized
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# models/loras/OpenPipe/ft-development-0b0f52d6-bc53-4443-bbad-4a6103c95501-pii-7b-optimized
This model is a fine-tuned version of [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0174
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.42 | 0.02 | 1 | 0.3989 |
| 0.0258 | 0.21 | 13 | 0.0304 |
| 0.025 | 0.43 | 26 | 0.0220 |
| 0.0146 | 0.64 | 39 | 0.0204 |
| 0.0208 | 0.85 | 52 | 0.0196 |
| 0.0136 | 1.07 | 65 | 0.0187 |
| 0.0148 | 1.28 | 78 | 0.0181 |
| 0.0178 | 1.49 | 91 | 0.0180 |
| 0.0204 | 1.7 | 104 | 0.0175 |
| 0.0128 | 1.92 | 117 | 0.0174 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.6
- Tokenizers 0.14.1
|