Model Card for 4-bit RoLlama3.1-8b-Instruct-DPO

Built from RoLlama3.1-8b-Instruct-DPO, quantized to 4-bit.

This variant of RoLlama3.1-8b-Instruct-DPO provides a reduced footprint through 4-bit quantization, aimed at enabling usage on resource-constrained GPUs while preserving a high fraction of the model’s capabilities.

Model Details

Comparison to 16 bit

It loooks that the effects of the quantization are minimal :

Task Metric FP16 Original 4-bit Absolute Diff. % Change
ARC Challenge Avg. Accuracy 44.84 42.74 -2.10 -4.68%
MMLU Avg. Accuracy 55.06 42.27 -12.79 -23.23%
Winogrande Avg. Accuracy 65.87 64.94 -0.93 -1.41%
Hellaswag Avg. Accuracy 58.67 52.39 -6.28 -10.70%
GSM8K Avg. Accuracy 44.17 38.87 -5.30 -11.99%
TruthfulQA Avg. Accuracy 47.82 48.67 +0.85 +1.78%
LaRoSeDa (binary) Macro-F1 96.10 97.47 +1.37 +1.43%
LaRoSeDa (multiclass) Macro-F1 55.37 64.05 +8.68 +15.68%
WMT EN-RO BLEU 21.29 20.54 -0.75 -3.52%
WMT RO-EN BLEU 21.86 21.16 -0.70 -3.20%
XQuAD (avg) EM / F1 21.58 / 36.54 21.45 / 37.73 ~-0.13 / +1.19 -0.60% / +3.26%
STS (avg) Spearman / Pearson 78.01 / 77.98 77.08 / 76.93 -0.93 / -1.05 -1.19% / -1.35%

Model Description

  • Developed by: OpenLLM-Ro
  • Language(s): Romanian
  • License: cc-by-nc-4.0
  • Quantized from model: RoLlama3.1-8b-Instruct-DPO
  • Quantization: 4-bit

Quantization reduces model size and improves inference speed but can lead to small drops in performance. Below is a comprehensive table of the main benchmarks comparing the original full-precision version with the new 4-bit variant.

How to Use

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")

instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
chat = [
    {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
    {"role": "user", "content": instruction},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to("cuda")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
11
Safetensors
Model size
4.65B params
Tensor type
FP16
·
F32
·
U8
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4Bit-BB

Dataset used to train OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-4Bit-BB

Evaluation results