A newer version of this model is available: OpenGVLab/InternViT-6B-448px-V2_5

InternViT-6B-448px-V1-0

[πŸ“‚ GitHub] [πŸ“œ InternVL 1.0] [πŸ“œ InternVL 1.5] [πŸ“œ Mini-InternVL] [πŸ“œ InternVL 2.5]

[πŸ†• Blog] [πŸ—¨οΈ Chat Demo] [πŸ€— HF Demo] [πŸš€ Quick Start] [πŸ“– Documents]

image

We release InternViT-6B-448px-V1-0, which is integrated into InternVL-Chat-V1-1. In this update, we explored increasing the resolution to 448x448, enhancing Optical Character Recognition (OCR) capabilities, and improving support for Chinese conversations. For examples of the enhanced capabilities, please refer to the LINK.

Model Details

  • Model Type: vision foundation model, feature backbone
  • Model Stats:
    • Params (M): 5903
    • Image size: 448 x 448
  • Pretrain Dataset: LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi, OCR-related datasets.
  • Note: This model has 48 blocks, and we found that using the output after the fourth-to-last block worked best for MLLM. Therefore, when building a MLLM with this model, please use the features from the fourth-to-last layer.

Quick Start

🚨 Note: In our experience, the InternViT V2.5 series is better suited for building MLLMs than traditional computer vision tasks.

import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-6B-448px-V1-0',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-0')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)

Citation

If you find this project useful in your research, please consider citing:

@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
Downloads last month
39
Inference API
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for OpenGVLab/InternViT-6B-448px-V1-0

Finetuned
(1)
this model
Finetunes
1 model
Merges
2 models

Datasets used to train OpenGVLab/InternViT-6B-448px-V1-0

Collection including OpenGVLab/InternViT-6B-448px-V1-0