Note: internal model, not ready for use
This is an intermediate model used as base-model for further pythia 12b SFT-8 experiments. It was trained on a wider set of instruction-tuning datasets for >12.5k steps with batch-size 128 and a context size of 2048. The gpt4all dataset had "as a language model" contamination (>1.8k entries). We added filtering later, but this model (pre-v8) was trained on the raw unfildered gpt4all dataset.
Datasets:
pretrain:
num_train_epochs: 1
weight_decay: 0.0
use_custom_sampler: true
sort_by_length: false
datasets:
- gpteacher_roleplay:
val_split: 0.05
- red_pajama:
fraction: 0.25
max_val_set: 1000
- wizardlm_70k:
val_split: 0.05
max_val_set: 500
- joke:
val_split: 0.05
- poem_instructions:
val_split: 0.025
- oa_stackexchange:
val_split: 0.05
fraction: 0.1
max_val_set: 1000
- tell_a_joke:
val_split: 0.05
max_val_set: 250
- webgpt:
val_split: 0.05
max_val_set: 250
- gpt4all:
val_split: 0.01
max_val_set: 1000
- alpaca_gpt4:
val_split: 0.025
max_val_set: 250
- code_alpaca:
val_split: 0.05
max_val_set: 250
- vicuna:
max_val_set: 250
- oig_file:
source_url: https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl
max_count: 10000
min_length: 250
val_split: 0.05
max_val_set: 250
- minimath:
val_split: 0.05
- humaneval_mbpp_codegen_qa:
val_split: 0.05
- humaneval_mbpp_testgen_qa:
val_split: 0.05
- grade_school_math_instructions:
val_split: 0.05
- recipes:
val_split: 0.05
- cmu_wiki_qa:
val_split: 0.05
- oa_wiki_qa_bart_10000row:
val_split: 0.05
max_val_set: 250
- prosocial_dialogue:
fraction: 0.1
max_val_set: 250
- explain_prosocial:
fraction: 0.075
max_val_set: 250
- soda:
fraction: 0.25
max_val_set: 1000
- oa_leet10k:
val_split: 0.05
max_val_set: 250
- dolly15k:
val_split: 0.05
max_val_set: 300
Pythia:
pythia-12b-pretrain:
dtype: fp16
log_dir: "pythia_log_12b"
learning_rate: 6e-6
model_name: EleutherAI/pythia-12b-deduped
output_dir: pythia_model_12b
weight_decay: 0.0
max_length: 2048
warmup_steps: 100
gradient_checkpointing: true
gradient_accumulation_steps: 4
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
eval_steps: 251
save_steps: 500
num_train_epochs: 1
save_total_limit: 2
deepspeed_config: configs/zero_config_pretrain.json
Command used: deepspeed trainer_sft.py --show_dataset_stats --configs defaults pythia-12b-pretrain pretrain --cache_dir .cache/ --output_dir .saved/pythia-12b-super-pretrain2 --deepspeed
- Downloads last month
- 1,184
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.