Text Generation
Transformers
PyTorch
English
llama
text-generation-inference
Inference Endpoints
File size: 10,192 Bytes
dca515e
8a857f6
 
 
 
7121d7c
 
 
8a857f6
dca515e
8a857f6
b734d6b
 
 
 
 
8a857f6
 
 
 
e7a4013
812717c
04efe3f
 
 
 
 
 
 
 
 
 
 
8a857f6
7121d7c
8a857f6
66cd022
 
f8cbb31
 
f840bd1
 
8a857f6
812717c
 
 
 
 
8a857f6
f840bd1
 
 
b734d6b
8a857f6
66cd022
 
f840bd1
 
 
66cd022
 
 
 
 
f840bd1
 
 
66cd022
 
 
 
b734d6b
8a857f6
812717c
7121d7c
8a857f6
 
7121d7c
8a857f6
b734d6b
f840bd1
 
 
7121d7c
8a857f6
 
 
 
 
 
 
 
b734d6b
f840bd1
b734d6b
 
 
 
f840bd1
 
 
8a857f6
 
 
778f9a9
8a857f6
58a75e6
812717c
b734d6b
f840bd1
8a857f6
7121d7c
 
8a857f6
b734d6b
f840bd1
 
 
8a857f6
 
 
 
 
 
 
 
 
 
 
 
7121d7c
8a857f6
 
 
58a75e6
8a857f6
 
 
 
58a75e6
8a857f6
 
 
 
58a75e6
8a857f6
 
 
 
58a75e6
8a857f6
082b15b
b734d6b
f840bd1
8a857f6
 
 
 
 
b734d6b
 
8a857f6
a0f5543
a09c29b
 
 
 
 
402cb09
a0f5543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7121d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a857f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
language:
- en
datasets:
- garage-bAInd/Open-Platypus
- Open-Orca/OpenOrca
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-4.0
---

<p><h1>🐋 The First OrcaPlatypus! 🐋</h1></p>

![Platty](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypusMerge.jpg)


# OpenOrca-Platypus2-13B

OpenOrca-Platypus2-13B is a merge of [`garage-bAInd/Platypus2-13B`](https://huggingface.co/garage-bAInd/Platypus2-13B) and [`Open-Orca/OpenOrcaxOpenChat-Preview2-13B`](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B).

This model is more than the sum of its parts! We are happy to be teaming up with the [Platypus](https://platypus-llm.github.io/) team to bring you a new model which once again tops the leaderboards!

Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2).


[<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2)


We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.

We will also give sneak-peak announcements on our Discord, which you can find here:

https://AlignmentLab.ai

# Evaluation

## HuggingFace Leaderboard Performance

![HF Leaderboard](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BHFLeaderboard.webp)


| Metric | Value |
|-----------------------|-------|
| MMLU (5-shot)         | 59.5  |
| ARC (25-shot)         | 62.88 |
| HellaSwag (10-shot)   | 83.19 |
| TruthfulQA (0-shot)   | 52.69 |
| Avg.                  | 64.56 |

We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.

Please see below for detailed instructions on reproducing benchmark results.


## AGIEval Performance

We compare our results to our base Preview2 model (using LM Evaluation Harness).

We find **112%** of the base model's performance on AGI Eval, averaging **0.463**.

![OpenOrca-Platypus2-13B AGIEval Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BAGIEval.webp "AGIEval Performance")

## BigBench-Hard Performance

We compare our results to our base Preview2 model (using LM Evaluation Harness).

We find **105%** of the base model's performance on BigBench-Hard, averaging **0.442**.

![OpenOrca-Platypus2-13B BigBench-Hard Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BBigBenchHard.webp "BigBench-Hard Performance")


# Model Details

* **Trained by**: **Platypus2-13B** trained by Cole Hunter & Ariel Lee; **OpenOrcaxOpenChat-Preview2-13B** trained by Open-Orca
* **Model type:**  **OpenOrca-Platypus2-13B** is an auto-regressive language model based on the Lllama 2 transformer architecture.
* **Language(s)**: English
* **License for Platypus2-13B base weights**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
* **License for OpenOrcaxOpenChat-Preview2-13B base weights**: Llama 2 Commercial


# Prompting

## Prompt Template for base Platypus2-13B

```
### Instruction:

<prompt> (without the <>)

### Response:
```


## Prompt Template for base OpenOrcaxOpenChat-Preview2-13B

OpenChat Llama2 V1: see [OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) for additional information. 


# Training

## Training Datasets

`garage-bAInd/Platypus2-13B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).

Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information.

[`Open-Orca/OpenOrcaxOpenChat-Preview2-13B`] trained using a refined subset of most of the GPT-4 data from the [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca).


## Training Procedure

`Open-Orca/Platypus2-13B` was instruction fine-tuned using LoRA on 1x A100-80GB.
For training details and inference instructions please see the [Platypus](https://github.com/arielnlee/Platypus) GitHub repo.


# Supplemental

## Reproducing Evaluation Results (for HuggingFace Leaderboard Eval)

Install LM Evaluation Harness:
```
# clone repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# change to repo directory
cd lm-evaluation-harness
# check out the correct commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# install
pip install -e .
```
Each task was evaluated on a single A100-80GB GPU.

ARC:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/arc_challenge_25shot.json --device cuda --num_fewshot 25
```

HellaSwag:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/hellaswag_10shot.json --device cuda --num_fewshot 10
```

MMLU:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/mmlu_5shot.json --device cuda --num_fewshot 5
```

TruthfulQA:
```
python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/truthfulqa_0shot.json --device cuda
```


## Limitations and bias

Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.

Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/


# Citations

```bibtex
@article{platypus2023,
    title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs}, 
    author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
    booktitle={arXiv preprint arxiv:2308.07317},
    year={2023}
}
@software{OpenOrcaxOpenChatPreview2,
  title = {OpenOrcaxOpenChatPreview2: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
  author = {Guan Wang and Bleys Goodson and Wing Lian and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B},
}
@software{openchat,
  title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
  author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
  doi = {10.5281/zenodo.8105775},
  url = {https://github.com/imoneoi/openchat},
  version = {pre-release},
  year = {2023},
  month = {7},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{touvron2023llama,
    title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, 
    author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
    year={2023},
    eprint= arXiv 2307.09288
}
@misc{longpre2023flan,
      title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, 
      author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
      year={2023},
      eprint={2301.13688},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
@article{hu2021lora,
  title={LoRA: Low-Rank Adaptation of Large Language Models},
  author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
  journal={CoRR},
  year={2021}
}
```