image/png

reference data model:

  datasets:
      link: https://huggingface.co/datasets/NickyNicky/oasst2_clusters

  model:
    - google/gemma-2b-it
      Link:
        https://huggingface.co/google/gemma-2b-it

    base fine tune: NickyNicky/gemma-2b-it_oasst2_chatML_Cluster_2_V1

  Epoch: 2

  future experts: test

  Eval model:
    - link:
        soon

train/loss 0.5407

image/png

!python -m pip install --upgrade pip
!pip install "torch>=2.1.1" -U
!pip install torchaudio==2.2.0
!pip install -q datasets trl peft bitsandbytes sentencepiece wandb
!pip install -q accelerate safetensors deepspeed
!pip install -q scipy ninja -U
!pip install -q -U transformers==4.38.0
!pip install flash-attn==2.5.5 --no-build-isolation

Version

import torch
torch.__version__
#OUTPUTS: ('2.2.0+cu121' )

How to use


from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
    GenerationConfig,
    TextIteratorStreamer,
)

from transformers import StoppingCriteria, StoppingCriteriaList

import torch

# model_id='NickyNicky/gemma-2b-it_oasst2_chatML_Cluster2_aya_multilingual'
model_id= "NickyNicky/gemma-2b-it_oasst2_chatML_Cluster2_aya_multilingual_10k_prompts_ranked_all_json_V1"
model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="auto",
                                             trust_remote_code=True,
                                             torch_dtype=torch.bfloat16,
                                             attn_implementation="flash_attention_2",
                                             # load_in_4bit=True,
                                             # low_cpu_mem_usage= True,

                                             )

max_length=2100
print("max_length",max_length)


tokenizer = AutoTokenizer.from_pretrained(model_id,
                                          # use_fast = False,
                                          max_length=max_length,)


class ListOfTokensStoppingCriteria(StoppingCriteria):
    """
    Clase para definir un criterio de parada basado en una lista de tokens específicos.
    """
    def __init__(self, tokenizer, stop_tokens):
        self.tokenizer = tokenizer
        # Codifica cada token de parada y guarda sus IDs en una lista
        self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]

    def __call__(self, input_ids, scores, **kwargs):
        # Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
        for stop_token_ids in self.stop_token_ids_list:
            len_stop_tokens = len(stop_token_ids)
            if len(input_ids[0]) >= len_stop_tokens:
                if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
                    return True
        return False

# Uso del criterio de parada personalizado
stop_tokens = ["<end_of_turn>"]  # Lista de tokens de parada

# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)

# Añade tu criterio de parada a una StoppingCriteriaList
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])


prompt="""What were the main contributions of Eratosthenes to the development of mathematics in ancient Greece?"""

#EXAMPLE #1
input_text = f'''<bos><start_of_turn>system
You are a prompt evaluator response format json.
ngrams_length: "8" | cluster_length: "15".
lista de codigos linguisticos disponibles: ["en", "en"].<end_of_turn>
<start_of_turn>user
### |detect_prompt|:
{prompt}<end_of_turn>
<start_of_turn>model
'''

### OUTPUT EXAMPLE
'''
{
    "ngrams_length": "8",
    "ngrams": ["main", "contribution", "eratosthenes", "development", "mathematic", "ancient", "greece", "ancient greece"],
    "cluster_length": "15",
    "cluster": ["quantum", "magnetic", "star", "metal", "planet", "gravity", "force", "universe", "distance", "compound", "gravitational", "quantum computing", "solar", "sun", "earth"],
    "cluster_desc": ["Astrophysics", "Quantum Computing"],
    "avg_rating": "5.0",
    "kind": "synthetic"
    
}<end_of_turn><eos>
'''



inputs = tokenizer.encode(input_text,
                          return_tensors="pt",
                          add_special_tokens=False).to("cuda:0")
max_new_tokens=700
generation_config = GenerationConfig(
              max_new_tokens=max_new_tokens,
              temperature=0.32,
              #top_p=0.9,
              top_k=45,
              repetition_penalty=1.,  #1.1
              do_sample=True,
          )
outputs = model.generate(generation_config=generation_config,
                         input_ids=inputs,
                         stopping_criteria=stopping_criteria_list,)
tokenizer.decode(outputs[0], skip_special_tokens=False) #True

code

https://colab.research.google.com/drive/1z26uLnTZWZ994G_dgyghNzh4hF2eEA6Z?usp=sharing

generated dataset model NickyNicky/prompts_ranked_808.

https://huggingface.co/datasets/NickyNicky/prompts_ranked_808
Downloads last month
7
Safetensors
Model size
2.51B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train NickyNicky/gemma-2b-it_oasst2_chatML_Cluster2_aya_multilingual_10k_prompts_ranked_all_json_V1