YAML Metadata
Error:
"language[0]" must only contain lowercase characters
YAML Metadata
Error:
"language[0]" with value "nn-NO" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
YAML Metadata
Error:
"tags[4]" must be a string
wav2vec2-xlsr-1B-NPSC-NN
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the NBAILAB/NPSC - 16K_MP3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4562
- Wer: 0.1531
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.6894 | 1.08 | 500 | 1.2423 | 0.8619 |
0.7543 | 2.15 | 1000 | 0.5956 | 0.3817 |
0.5481 | 3.23 | 1500 | 0.5043 | 0.3246 |
0.4661 | 4.3 | 2000 | 0.4813 | 0.2793 |
0.3901 | 5.38 | 2500 | 0.4371 | 0.2592 |
0.3512 | 6.45 | 3000 | 0.4216 | 0.2458 |
0.3016 | 7.53 | 3500 | 0.3814 | 0.2257 |
0.278 | 8.6 | 4000 | 0.4151 | 0.2145 |
0.2435 | 9.68 | 4500 | 0.4816 | 0.2130 |
0.2122 | 10.75 | 5000 | 0.4489 | 0.2137 |
0.1949 | 11.83 | 5500 | 0.3978 | 0.2063 |
0.1929 | 12.9 | 6000 | 0.3823 | 0.2026 |
0.1757 | 13.98 | 6500 | 0.3409 | 0.1965 |
0.1771 | 15.05 | 7000 | 0.3844 | 0.1936 |
0.1452 | 16.13 | 7500 | 0.3749 | 0.1900 |
0.1341 | 17.2 | 8000 | 0.4407 | 0.2026 |
0.13 | 18.28 | 8500 | 0.4253 | 0.1883 |
0.1183 | 19.35 | 9000 | 0.4311 | 0.1880 |
0.118 | 20.43 | 9500 | 0.4431 | 0.1882 |
0.1123 | 21.51 | 10000 | 0.4753 | 0.1820 |
0.1037 | 22.58 | 10500 | 0.4087 | 0.1834 |
0.1066 | 23.66 | 11000 | 0.4151 | 0.1845 |
0.0977 | 24.73 | 11500 | 0.4367 | 0.1783 |
0.0968 | 25.81 | 12000 | 0.4237 | 0.1756 |
0.0835 | 26.88 | 12500 | 0.4729 | 0.1781 |
0.0919 | 27.96 | 13000 | 0.4153 | 0.1701 |
0.0677 | 29.03 | 13500 | 0.4317 | 0.1693 |
0.0726 | 30.11 | 14000 | 0.4380 | 0.1736 |
0.066 | 31.18 | 14500 | 0.4384 | 0.1681 |
0.0713 | 32.26 | 15000 | 0.4215 | 0.1629 |
0.0605 | 33.33 | 15500 | 0.4574 | 0.1714 |
0.0632 | 34.41 | 16000 | 0.4343 | 0.1642 |
0.0567 | 35.48 | 16500 | 0.4231 | 0.1601 |
0.0556 | 36.56 | 17000 | 0.4404 | 0.1667 |
0.0426 | 37.63 | 17500 | 0.4459 | 0.1625 |
0.0445 | 38.71 | 18000 | 0.4484 | 0.1629 |
0.0463 | 39.78 | 18500 | 0.4508 | 0.1596 |
0.0448 | 40.86 | 19000 | 0.4395 | 0.1605 |
0.0434 | 41.94 | 19500 | 0.4490 | 0.1607 |
0.0347 | 43.01 | 20000 | 0.4772 | 0.1582 |
0.0332 | 44.09 | 20500 | 0.4729 | 0.1582 |
0.037 | 45.16 | 21000 | 0.4559 | 0.1573 |
0.0328 | 46.24 | 21500 | 0.4664 | 0.1560 |
0.0366 | 47.31 | 22000 | 0.4543 | 0.1543 |
0.0377 | 48.39 | 22500 | 0.4507 | 0.1560 |
0.0331 | 49.46 | 23000 | 0.4567 | 0.1533 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train NbAiLab/wav2vec2-xlsr-1B-NPSC-NN
Evaluation results
- Test (Nynorsk) WER on NPSCself-reported0.133
- Test (Nynorsk) CER on NPSCself-reported0.045