DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa

Notes.

Run with Deepspeed,

pip install datasets
pip install deepspeed
# Download the deepspeed config file
wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json
export TASK_NAME=mnli
output_dir="ds_results"
num_gpus=8
batch_size=8
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\
  run_glue.py \\
  --model_name_or_path microsoft/deberta-v2-xxlarge \\
  --task_name $TASK_NAME \\
  --do_train \\
  --do_eval \\
  --max_seq_length 256 \\
  --per_device_train_batch_size ${batch_size} \\
  --learning_rate 3e-6 \\
  --num_train_epochs 3 \\
  --output_dir $output_dir \\
  --overwrite_output_dir \\
  --logging_steps 10 \\
  --logging_dir $output_dir \\
  --deepspeed ds_config.json

You can also run with --sharded_ddp

cd transformers/examples/text-classification/
export TASK_NAME=mnli
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py   --model_name_or_path microsoft/deberta-v2-xxlarge   \\
--task_name $TASK_NAME   --do_train   --do_eval   --max_seq_length 256   --per_device_train_batch_size 8   \\
--learning_rate 3e-6   --num_train_epochs 3   --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16

Citation

If you find DeBERTa useful for your work, please cite the following paper:

@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.