Edit model card

Visualize in Weights & Biases

1_M_cards-swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-v3

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1701
  • Accuracy: 0.5118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3156 0.9995 1633 1.2976 0.4477
1.2943 1.9997 3267 1.2443 0.4668
1.2411 2.9998 4901 1.2229 0.4787
1.2368 4.0 6535 1.1967 0.4901
1.1973 4.9995 8168 1.1910 0.4927
1.2124 5.9997 9802 1.1811 0.4989
1.1753 6.9998 11436 1.1685 0.5062
1.1554 8.0 13070 1.1681 0.5080
1.1279 8.9995 14703 1.1685 0.5100
1.1121 9.9954 16330 1.1701 0.5118

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
86.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Mrohit01/1_M_cards-swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-v3