INFERENCE
# Load model directly
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/qwen-conversational-finetuned")
model = AutoModelForCausalLM.from_pretrained("Mr-Vicky-01/qwen-conversational-finetuned")
prompt = """
<|im_start|>system\nYou are a helpful AI assistant named Securitron<|im_end|>
"""
# Keep a list for the last one conversation exchanges
conversation_history = []
while True:
user_prompt = input("\nUser Question: ")
if user_prompt.lower() == 'break':
break
# Format the user's input
user = f"""<|im_start|>user
{user_prompt}<|im_end|>
<|im_start|>assistant"""
# Add the user's question to the conversation history
conversation_history.append(user)
# Ensure conversation starts with a user's input and keep only the last 2 exchanges (4 turns)
conversation_history = conversation_history[-5:]
# Build the full prompt
current_prompt = prompt + "\n".join(conversation_history)
# Tokenize the prompt
encodeds = tokenizer(current_prompt, return_tensors="pt", truncation=True).input_ids
# Move model and inputs to the appropriate device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)
# Create an empty list to store generated tokens
generated_ids = inputs
# Start generating tokens one by one
assistant_response = ""
for _ in range(512): # Specify a max token limit for streaming
next_token = model.generate(
generated_ids,
max_new_tokens=1,
pad_token_id=151644,
eos_token_id=151645,
num_return_sequences=1,
do_sample=False,
# top_k=5,
# temperature=0.2,
# top_p=0.90
)
generated_ids = torch.cat([generated_ids, next_token[:, -1:]], dim=1)
token_id = next_token[0, -1].item()
token = tokenizer.decode([token_id], skip_special_tokens=True)
assistant_response += token
print(token, end="", flush=True)
if token_id == 151645: # EOS token
break
conversation_history.append(f"{assistant_response.strip()}<|im_end|>")
- Downloads last month
- 37
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.